|
import gradio as gr |
|
from detector.face import verify_faces, analyze_face |
|
from detector.voice import verify_voices |
|
from detector.video import verify_faces_in_video |
|
from reports.pdf_report import generate_pdf_report |
|
from utils.youtube_utils import download_youtube_video |
|
import modal |
|
verify_faces_remote = modal.Function.lookup("deepface-agent", "verify_faces_remote") |
|
|
|
|
|
|
|
last_face_result = None |
|
last_voice_result = None |
|
last_video_results = None |
|
|
|
|
|
def compare_faces(img1_path: str, img2_path: str) -> str: |
|
"""Use this tool to compare to faces for a match |
|
Args: |
|
img1_path: The path to the first image |
|
img2_path: The path to the second image |
|
""" |
|
global last_face_result |
|
|
|
|
|
with open(img1_path, "rb") as f1, open(img2_path, "rb") as f2: |
|
img1_bytes = f1.read() |
|
img2_bytes = f2.read() |
|
|
|
result = verify_faces_remote.remote(img1_bytes, img2_bytes) |
|
result_text = "" |
|
|
|
if "error" in result: |
|
return f"β Error: {result['error']}" |
|
|
|
if result["verified"]: |
|
result_text = f"β
Match! Distance: {result['distance']:.4f} (Threshold: {result['threshold']})" |
|
last_face_result = result_text |
|
return result_text |
|
|
|
else: |
|
result_text = f"β No Match. Distance: {result['distance']:.4f} (Threshold: {result['threshold']})" |
|
last_face_result = result_text |
|
return result_text |
|
|
|
|
|
def compare_voices(audio1: str, audio2: str) -> str: |
|
"""Use this tool to compare two voices for a match |
|
Args: |
|
audio1: The path to the first audio file |
|
audio2: The path to the second audio file |
|
""" |
|
global last_voice_result |
|
result = verify_voices(audio1, audio2) |
|
result_text = "" |
|
|
|
if "error" in result: |
|
return f"β Error: {result['error']}" |
|
|
|
if result["match"]: |
|
result_text = f"β
Same speaker detected. Similarity: {result['similarity']} (Threshold: {result['threshold']})" |
|
last_voice_result = result_text |
|
return result_text |
|
else: |
|
result_text = f"β Different speakers. Similarity: {result['similarity']} (Threshold: {result['threshold']})" |
|
last_voice_result = result_text |
|
return result_text |
|
|
|
|
|
def scan_video(video_file: str, ref_img: str, youtube_url="") -> str: |
|
"""Use this tool to scan a video for deepfake face swaps |
|
Args: |
|
video_file: The path to the video file |
|
ref_img: The path to the reference image |
|
youtube_url: The YouTube URL (optional) |
|
""" |
|
global last_video_results |
|
|
|
if youtube_url: |
|
try: |
|
video_file = download_youtube_video(youtube_url) |
|
except Exception as e: |
|
return f"β Error downloading YouTube video: {str(e)}" |
|
|
|
results = verify_faces_in_video(video_file, ref_img) |
|
report = "" |
|
last_video_results = results |
|
for r in results: |
|
if "error" in r: |
|
report += f"\nβ οΈ Frame {r['frame']}: {r['error']}" |
|
|
|
else: |
|
status = "β
Match" if r["verified"] else "β Mismatch" |
|
report += f"\nπΌ Frame {r['frame']}: {status} (Distance: {r['distance']})" |
|
|
|
return report |
|
|
|
|
|
def generate_report(): |
|
return generate_pdf_report(last_face_result, last_voice_result, last_video_results) |
|
|
|
|
|
with gr.Blocks(title="Deepfake Watchdog") as demo: |
|
gr.Markdown("# π‘οΈDeepfake Watchdog π€") |
|
gr.Markdown("## Upload your image and/or voice to scan for deepfake misuse online.") |
|
|
|
|
|
with gr.Tab("Face Verification"): |
|
image1 = gr.Image(label="Upload your face", type="filepath") |
|
|
|
image2 = gr.Image(label="Upload another face", type="filepath") |
|
|
|
|
|
|
|
run_button = gr.Button("Compare Faces") |
|
output_text = gr.Textbox(label="Result") |
|
|
|
|
|
run_button.click(compare_faces, inputs=[image1, image2], outputs=[output_text]) |
|
|
|
|
|
with gr.Tab("π€ Voice Verification"): |
|
gr.Markdown("Upload two audio files to check if the voices match.") |
|
|
|
audio1 = gr.Audio(type="filepath", label="Voice Sample 1") |
|
audio2 = gr.Audio(type="filepath", label="Voice Sample 2") |
|
|
|
voice_btn = gr.Button("Compare Voices") |
|
voice_output = gr.Textbox(label="Result") |
|
|
|
voice_btn.click(compare_voices, inputs=[audio1, audio2], outputs=voice_output) |
|
|
|
with gr.Tab("πΉ Video Deepfake Scan"): |
|
gr.Markdown( |
|
"π Upload a video or paste a YouTube link and we'll analyze it for deepfake face swaps." |
|
) |
|
|
|
ref_img = gr.Image(type="filepath", label="Reference Face") |
|
video_input = gr.Video(label="Video File (optional)") |
|
youtube_url = gr.Textbox(label="YouTube URL (optional)") |
|
scan_btn = gr.Button("Scan Video") |
|
scan_output = gr.Textbox(label="Scan Results", lines=10) |
|
|
|
scan_btn.click( |
|
scan_video, inputs=[video_input, ref_img, youtube_url], outputs=scan_output |
|
) |
|
|
|
with gr.Tab("π Generate Report"): |
|
report_btn = gr.Button("Generate PDF Report") |
|
report_output = gr.File(label="Download Report") |
|
|
|
report_btn.click(generate_report, outputs=report_output) |
|
|
|
|
|
demo.launch(mcp_server=True) |
|
|