Abraham E. Tavarez
modal file renamed
837d8ef
raw
history blame
6.02 kB
import gradio as gr
from reports.pdf_report import generate_pdf_report
from utils.youtube_utils import download_youtube_video
import modal
verify_faces_remote = modal.Function.lookup("deepface-agent", "verify_faces_remote")
verify_voices_remote = modal.Function.lookup("deepface-agent", "verify_voices_remote")
verify_faces_in_video_remote = modal.Function.lookup(
"deepface-agent", "verify_faces_in_video_remote"
)
# Holds latest results
last_face_result = None
last_voice_result = None
last_video_results = None
def compare_faces(img1_path: str, img2_path: str) -> str:
"""Use this tool to compare to faces for a match
Args:
img1_path: The path to the first image
img2_path: The path to the second image
"""
global last_face_result
# Read image files as bytes
with open(img1_path, "rb") as f1, open(img2_path, "rb") as f2:
img1_bytes = f1.read()
img2_bytes = f2.read()
result = verify_faces_remote.remote(img1_bytes, img2_bytes)
result_text = ""
if "error" in result:
return f"โŒ Error: {result['error']}"
if result["verified"]:
result_text = f"โœ… Match! Distance: {result['distance']:.4f} (Threshold: {result['threshold']})"
last_face_result = result_text
return result_text
else:
result_text = f"โŒ No Match. Distance: {result['distance']:.4f} (Threshold: {result['threshold']})"
last_face_result = result_text
return result_text
def compare_voices(audio1: str, audio2: str) -> str:
"""Use this tool to compare two voices for a match
Args:
audio1: The path to the first audio file
audio2: The path to the second audio file
"""
global last_voice_result
try:
with open(audio1, "rb") as a1, open(audio2, "rb") as a2:
audio1_bytes = a1.read()
audio2_bytes = a2.read()
result = verify_voices_remote.remote(audio1_bytes, audio2_bytes)
result_text = ""
if "error" in result:
return f"โŒ Error: {result['error']}"
if result["match"]:
result_text = f"โœ… Same speaker detected. Similarity: {result['similarity']} (Threshold: {result['threshold']})"
last_voice_result = result_text
return result_text
else:
result_text = f"โŒ Different speakers. Similarity: {result['similarity']} (Threshold: {result['threshold']})"
last_voice_result = result_text
return result_text
except Exception as e:
return f"โŒ Error reading audio files: {str(e)}"
def scan_video(video_file: str, ref_img: str, youtube_url="") -> str:
"""Use this tool to scan a video for deepfake face swaps
Args:
video_file: The path to the video file
ref_img: The path to the reference image
youtube_url: The YouTube URL (optional)
"""
global last_video_results
if youtube_url:
try:
video_file = download_youtube_video(youtube_url)
except Exception as e:
return f"โŒ Error downloading YouTube video: {str(e)}"
with open(video_file, "rb") as vf, open(ref_img, "rb") as rf:
video_bytes = vf.read()
ref_img_bytes = rf.read()
try:
results = verify_faces_in_video_remote.remote(video_bytes, ref_img_bytes, interval=30)
except Exception as e:
return f"โŒ Error processing video: {str(e)}"
report = ""
last_video_results = results
for r in results:
if "error" in r:
report += f"\nโš ๏ธ Frame {r['frame']}: {r['error']}"
else:
status = "โœ… Match" if r["verified"] else "โŒ Mismatch"
report += f"\n๐Ÿ–ผ Frame {r['frame']}: {status} (Distance: {r['distance']})"
return report
def generate_report():
return generate_pdf_report(last_face_result, last_voice_result, last_video_results)
with gr.Blocks(title="Deepfake Watchdog") as demo:
gr.Markdown("# ๐Ÿ›ก๏ธDeepfake Watchdog ๐Ÿค—")
gr.Markdown("## Upload your image and/or voice to scan for deepfake misuse online.")
# Face Verification
with gr.Tab("Face Verification"):
image1 = gr.Image(label="Upload your face", type="filepath")
# audio = gr.Audio(label="Upload your voice (optional)", type="filepath")
image2 = gr.Image(label="Upload another face", type="filepath")
# face_btn = gr.Button("Compare Faces")
run_button = gr.Button("Compare Faces")
output_text = gr.Textbox(label="Result")
# output_gallery = gr.Gallery(label="Matched Results")
run_button.click(compare_faces, inputs=[image1, image2], outputs=[output_text])
# Voice Verification
with gr.Tab("๐ŸŽค Voice Verification"):
gr.Markdown("Upload two audio files to check if the voices match.")
audio1 = gr.Audio(type="filepath", label="Voice Sample 1")
audio2 = gr.Audio(type="filepath", label="Voice Sample 2")
voice_btn = gr.Button("Compare Voices")
voice_output = gr.Textbox(label="Result")
voice_btn.click(compare_voices, inputs=[audio1, audio2], outputs=voice_output)
with gr.Tab("๐Ÿ“น Video Deepfake Scan"):
gr.Markdown(
"๐Ÿ” Upload a video or paste a YouTube link and we'll analyze it for deepfake face swaps."
)
ref_img = gr.Image(type="filepath", label="Reference Face")
video_input = gr.Video(label="Video File (optional)")
youtube_url = gr.Textbox(label="YouTube URL (optional)")
scan_btn = gr.Button("Scan Video")
scan_output = gr.Textbox(label="Scan Results", lines=10)
scan_btn.click(
scan_video, inputs=[video_input, ref_img, youtube_url], outputs=scan_output
)
with gr.Tab("๐Ÿ“„ Generate Report"):
report_btn = gr.Button("Generate PDF Report")
report_output = gr.File(label="Download Report")
report_btn.click(generate_report, outputs=report_output)
demo.launch(mcp_server=True)