Abraham E. Tavarez
youtube video scan
56225c5
raw
history blame
5.84 kB
import gradio as gr
from detector.face import verify_faces, analyze_face
from detector.voice import verify_voices
from detector.video import verify_faces_in_video
from reports.pdf_report import generate_pdf_report
from utils.youtube_utils import download_youtube_video
# Holds latest results
last_face_result = None
last_voice_result = None
last_video_results = None
def start_scan(image, audio):
return "Scanning in progress...", None
def compare_faces(img1_path, img2_path):
global last_face_result
result = verify_faces(img1_path, img2_path)
result_text = ""
if "error" in result:
return f"โŒ Error: {result['error']}"
if result["verified"]:
result_text = f"โœ… Match! Distance: {result['distance']:.4f} (Threshold: {result['threshold']})"
last_face_result = result_text
return result_text
else:
result_text = f"โŒ No Match. Distance: {result['distance']:.4f} (Threshold: {result['threshold']})"
last_face_result = result_text
return result_text
def compare_voices(audio1, audio2):
global last_voice_result
result = verify_voices(audio1, audio2)
result_text = ""
if "error" in result:
return f"โŒ Error: {result['error']}"
if result["match"]:
result_text = f"โœ… Same speaker detected. Similarity: {result['similarity']} (Threshold: {result['threshold']})"
last_voice_result = result_text
return result_text
else:
result_text = f"โŒ Different speakers. Similarity: {result['similarity']} (Threshold: {result['threshold']})"
last_voice_result = result_text
return result_text
def scan_video(video_file, ref_img, youtube_url=""):
global last_video_results
if youtube_url:
try:
video_file = download_youtube_video(youtube_url)
except Exception as e:
return f"โŒ Error downloading YouTube video: {str(e)}"
results = verify_faces_in_video(video_file, ref_img)
report = ""
last_video_results = results
for r in results:
if "error" in r:
report += f"\nโš ๏ธ Frame {r['frame']}: {r['error']}"
# last_video_results.append(report)
else:
status = "โœ… Match" if r["verified"] else "โŒ Mismatch"
report += f"\n๐Ÿ–ผ Frame {r['frame']}: {status} (Distance: {r['distance']})"
# last_video_results.append(report)
return report
# def scan_video(video_path, ref_img):
# global last_video_results
# results = verify_faces_in_video(video_path, ref_img)
# report = ""
# last_video_results = results
# for r in results:
# if "error" in r:
# report += f"\nโš ๏ธ Frame {r['frame']}: {r['error']}"
# # last_video_results.append(report)
# else:
# status = "โœ… Match" if r["verified"] else "โŒ Mismatch"
# report += f"\n๐Ÿ–ผ Frame {r['frame']}: {status} (Distance: {r['distance']})"
# # last_video_results.append(report)
# return report
def generate_report():
return generate_pdf_report(last_face_result, last_voice_result, last_video_results)
with gr.Blocks(title="Deepfake Watchdog") as demo:
gr.Markdown("# ๐Ÿ›ก๏ธDeepfake Watchdog ๐Ÿค—")
gr.Markdown("## Upload your image and/or voice to scan for deepfake misuse online.")
# Face Verification
with gr.Tab("Face Verification"):
image1 = gr.Image(label="Upload your face", type="filepath")
# audio = gr.Audio(label="Upload your voice (optional)", type="filepath")
image2 = gr.Image(label="Upload another face", type="filepath")
# face_btn = gr.Button("Compare Faces")
run_button = gr.Button("Compare Faces")
output_text = gr.Textbox(label="Result")
# output_gallery = gr.Gallery(label="Matched Results")
run_button.click(
compare_faces, inputs=[image1, image2], outputs=[output_text]
)
# Voice Verification
with gr.Tab("๐ŸŽค Voice Verification"):
gr.Markdown("Upload two audio files to check if the voices match.")
audio1 = gr.Audio(type="filepath", label="Voice Sample 1")
audio2 = gr.Audio(type="filepath", label="Voice Sample 2")
voice_btn = gr.Button("Compare Voices")
voice_output = gr.Textbox(label="Result")
voice_btn.click(compare_voices, inputs=[audio1, audio2], outputs=voice_output)
# Video DeepFake Scan
# gr.Markdown("### ๐Ÿ“น Video Deepfake Scan")
# with gr.Tab("๐Ÿ“น Video Deepfake Scan"):
# gr.Markdown("Upload a video and a reference image. We'll scan for deepfake face mismatches.")
# ref_img = gr.Image(type="filepath", label="Reference Face")
# video_input = gr.Video(label="Video File")
# scan_btn = gr.Button("Scan Video")
# scan_output = gr.Textbox(label="Scan Results", lines=10)
# scan_btn.click(scan_video, inputs=[video_input, ref_img], outputs=scan_output)
with gr.Tab("๐Ÿ“น Video Deepfake Scan"):
gr.Markdown("๐Ÿ” Upload a video or paste a YouTube link and we'll analyze it for deepfake face swaps.")
ref_img = gr.Image(type="filepath", label="Reference Face")
video_input = gr.Video(label="Video File (optional)")
youtube_url = gr.Textbox(label="YouTube URL (optional)")
scan_btn = gr.Button("Scan Video")
scan_output = gr.Textbox(label="Scan Results", lines=10)
scan_btn.click(scan_video, inputs=[video_input, ref_img, youtube_url], outputs=scan_output)
with gr.Tab("๐Ÿ“„ Generate Report"):
report_btn = gr.Button("Generate PDF Report")
report_output = gr.File(label="Download Report")
report_btn.click(generate_report, outputs=report_output)
demo.launch(mcp_server=True)