Abid Ali Awan
Update app.py: Modify HTML structure for the Gradio interface by simplifying the layout and changing the launch mode to SSR disabled for improved performance.
affe608
raw
history blame
34.4 kB
import json
import os
import time
from pathlib import Path
import gradio as gr
from gradio import ChatMessage
from agents.financial_agent import FinancialAdvisorAgent
from agents.tools import FinancialTools
# Avatar configuration
AVATAR_IMAGES = (
None,
"./public/images/fin_logo.png",
)
# Initialize tools and agent
financial_tools = FinancialTools(tavily_api_key=os.getenv("TAVILY_API_KEY"))
tools = financial_tools.get_all_tools()
agent = FinancialAdvisorAgent(tools=tools, openai_api_key=os.getenv("OPENAI_API_KEY"))
gr.set_static_paths(paths=[(Path.cwd() / "public" / "images").absolute()])
def analyze_data_with_repl(data_type, data):
"""Analyze financial data using Python REPL with comprehensive insights"""
if data_type == "budget":
try:
budget_data = json.loads(data)
categories = list(budget_data.get("current_expenses", {}).keys())
values = list(budget_data.get("current_expenses", {}).values())
income = budget_data.get("monthly_income", budget_data.get("income", 0))
if categories and values:
total_expenses = sum(values)
analysis_text = "πŸ’° **Comprehensive Budget Analysis**\n\n"
# Income vs Expenses Overview
analysis_text += "## πŸ“ˆ **Income vs Expenses Overview**\n"
analysis_text += f"- **Monthly Income**: ${income:,.0f}\n"
analysis_text += f"- **Total Expenses**: ${total_expenses:,.0f}\n"
if income > 0:
remaining = income - total_expenses
savings_rate = (remaining / income * 100) if income > 0 else 0
if remaining > 0:
analysis_text += f"- **πŸ’š Surplus**: ${remaining:,.0f}\n"
analysis_text += f"- **πŸ’Ž Savings Rate**: {savings_rate:.1f}%\n"
else:
analysis_text += f"- **πŸ”΄ Deficit**: ${abs(remaining):,.0f}\n"
analysis_text += (
f"- **⚠️ Overspending**: {abs(savings_rate):.1f}%\n"
)
# Expense Breakdown with Progress Bars
analysis_text += "\n## πŸ’³ **Expense Breakdown**\n"
for i, (category, amount) in enumerate(zip(categories, values)):
percentage = (
(amount / total_expenses * 100) if total_expenses > 0 else 0
)
income_percentage = (amount / income * 100) if income > 0 else 0
bar = "β–ˆ" * min(int(percentage / 3), 30) # Max 30 chars
analysis_text += f"**{category.title()}**: ${amount:,.0f}\n"
analysis_text += f" └─ {percentage:.1f}% of expenses | {income_percentage:.1f}% of income {bar}\n\n"
# Financial Health Metrics
analysis_text += "## πŸ“Š **Financial Health Metrics**\n"
avg_expense = total_expenses / len(values)
largest_expense = max(values)
smallest_expense = min(values)
largest_category = categories[values.index(largest_expense)]
smallest_category = categories[values.index(smallest_expense)]
analysis_text += (
f"- **Average Category Expense**: ${avg_expense:,.0f}\n"
)
analysis_text += f"- **Highest Expense**: {largest_category} (${largest_expense:,.0f})\n"
analysis_text += f"- **Lowest Expense**: {smallest_category} (${smallest_expense:,.0f})\n"
analysis_text += (
f"- **Expense Range**: ${largest_expense - smallest_expense:,.0f}\n"
)
# Budget Recommendations
analysis_text += "\n## πŸ’‘ **Smart Budget Insights**\n"
# 50/30/20 Rule Analysis
if income > 0:
needs_target = income * 0.50
wants_target = income * 0.30
savings_target = income * 0.20
analysis_text += "**50/30/20 Rule Comparison:**\n"
analysis_text += f"- Needs Target (50%): ${needs_target:,.0f}\n"
analysis_text += f"- Wants Target (30%): ${wants_target:,.0f}\n"
analysis_text += f"- Savings Target (20%): ${savings_target:,.0f}\n"
if savings_rate >= 20:
analysis_text += "βœ… **Excellent savings rate!**\n"
elif savings_rate >= 10:
analysis_text += "⚠️ **Good savings, aim for 20%**\n"
else:
analysis_text += (
"πŸ”΄ **Consider reducing expenses to save more**\n"
)
# Category Warnings
for category, amount in zip(categories, values):
if income > 0:
cat_percentage = amount / income * 100
if (
category.lower() in ["rent", "housing"]
and cat_percentage > 30
):
analysis_text += f"⚠️ **Housing costs high**: {cat_percentage:.1f}% (recommend <30%)\n"
elif (
category.lower() in ["food", "dining"]
and cat_percentage > 15
):
analysis_text += f"⚠️ **Food costs high**: {cat_percentage:.1f}% (recommend <15%)\n"
return analysis_text
except Exception as e:
return f"Error analyzing budget data: {str(e)}"
elif data_type == "portfolio":
try:
portfolio_data = json.loads(data)
holdings = portfolio_data.get("holdings", [])
total_value = sum(holding.get("value", 0) for holding in holdings)
analysis_text = "πŸ“Š **Advanced Portfolio Analysis**\n\n"
# Portfolio Overview
analysis_text += "## πŸ’Ό **Portfolio Overview**\n"
analysis_text += f"- **Total Portfolio Value**: ${total_value:,.2f}\n"
analysis_text += f"- **Number of Holdings**: {len(holdings)}\n"
if holdings:
values = [holding.get("value", 0) for holding in holdings]
avg_holding = sum(values) / len(values)
max_holding = max(values)
min_holding = min(values)
analysis_text += f"- **Average Holding Size**: ${avg_holding:,.2f}\n"
analysis_text += f"- **Largest Position**: ${max_holding:,.2f}\n"
analysis_text += f"- **Smallest Position**: ${min_holding:,.2f}\n"
# Detailed Holdings breakdown
analysis_text += "\n## πŸ“ˆ **Holdings Breakdown**\n"
sorted_holdings = sorted(
holdings, key=lambda x: x.get("value", 0), reverse=True
)
for i, holding in enumerate(sorted_holdings, 1):
symbol = holding.get("symbol", "Unknown")
value = holding.get("value", 0)
shares = holding.get("shares", 0)
allocation = holding.get(
"allocation", (value / total_value * 100) if total_value > 0 else 0
)
sector = holding.get("sector", "Unknown")
# Calculate position concentration risk
risk_level = (
"🟒 Low"
if allocation < 10
else "🟑 Medium"
if allocation < 25
else "πŸ”΄ High"
)
analysis_text += f"**#{i} {symbol}** - {sector}\n"
analysis_text += f" └─ Value: ${value:,.2f} | Shares: {shares:,.0f} | Weight: {allocation:.1f}%\n"
analysis_text += f" └─ Concentration Risk: {risk_level}\n\n"
# Sector analysis with advanced metrics
sectors = {}
sector_values = {}
for holding in holdings:
sector = holding.get("sector", "Unknown")
allocation = holding.get("allocation", 0)
value = holding.get("value", 0)
sectors[sector] = sectors.get(sector, 0) + allocation
sector_values[sector] = sector_values.get(sector, 0) + value
if sectors:
analysis_text += "## 🏭 **Sector Diversification Analysis**\n"
sorted_sectors = sorted(
sectors.items(), key=lambda x: x[1], reverse=True
)
for sector, allocation in sorted_sectors:
bar = "β–ˆ" * min(int(allocation / 2), 30)
value = sector_values.get(sector, 0)
# Sector concentration assessment
if allocation > 40:
risk_emoji = "πŸ”΄"
risk_text = "Over-concentrated"
elif allocation > 25:
risk_emoji = "🟑"
risk_text = "Moderate concentration"
else:
risk_emoji = "🟒"
risk_text = "Well diversified"
analysis_text += f"**{sector}**: {allocation:.1f}% (${value:,.2f}) {risk_emoji}\n"
analysis_text += f" └─ {bar} {risk_text}\n\n"
# Portfolio Health Metrics
analysis_text += "## 🎯 **Portfolio Health Assessment**\n"
# Diversification Score
num_sectors = len(sectors)
if num_sectors >= 8:
diversification = "🟒 Excellent"
elif num_sectors >= 5:
diversification = "🟑 Good"
else:
diversification = "πŸ”΄ Poor"
analysis_text += f"- **Sector Diversification**: {diversification} ({num_sectors} sectors)\n"
# Concentration Risk
if holdings:
top_3_allocation = sum(
sorted([h.get("allocation", 0) for h in holdings], reverse=True)[:3]
)
if top_3_allocation > 60:
concentration_risk = "πŸ”΄ High"
elif top_3_allocation > 40:
concentration_risk = "🟑 Medium"
else:
concentration_risk = "🟒 Low"
analysis_text += f"- **Concentration Risk**: {concentration_risk} (Top 3: {top_3_allocation:.1f}%)\n"
# Portfolio Recommendations
analysis_text += "\n## πŸ’‘ **Portfolio Optimization Recommendations**\n"
# Check for over-concentration
for holding in holdings:
allocation = holding.get("allocation", 0)
if allocation > 25:
analysis_text += f"⚠️ **{holding.get('symbol', 'Unknown')}** is over-weighted at {allocation:.1f}% (consider rebalancing)\n"
# Sector recommendations
for sector, allocation in sectors.items():
if allocation > 40:
analysis_text += f"⚠️ **{sector}** sector over-weighted at {allocation:.1f}% (consider diversification)\n"
# Diversification suggestions
if num_sectors < 5:
analysis_text += "πŸ’‘ **Consider adding exposure to more sectors for better diversification**\n"
if len(holdings) < 10:
analysis_text += (
"πŸ’‘ **Consider adding more holdings to reduce single-stock risk**\n"
)
return analysis_text
except Exception as e:
return f"Error analyzing portfolio data: {str(e)}"
elif data_type == "stock":
try:
stock_data = json.loads(data)
symbol = stock_data.get("symbol", "Unknown")
price_str = stock_data.get("current_price", "0")
analysis_text = f"πŸ“ˆ **Comprehensive Stock Analysis: {symbol}**\n\n"
# Company Overview
analysis_text += "## 🏒 **Company Overview**\n"
analysis_text += f"- **Symbol**: {symbol}\n"
analysis_text += f"- **Current Price**: {price_str}\n"
analysis_text += f"- **Company**: {stock_data.get('company_name', 'N/A')}\n"
analysis_text += f"- **Sector**: {stock_data.get('sector', 'N/A')}\n"
analysis_text += f"- **Industry**: {stock_data.get('industry', 'N/A')}\n"
analysis_text += (
f"- **Market Cap**: {stock_data.get('market_cap', 'N/A')}\n\n"
)
# Financial Metrics
financials = stock_data.get("financials", {})
if financials:
analysis_text += "## πŸ’Ή **Key Financial Metrics**\n"
# Valuation metrics
pe_ratio = financials.get("pe_ratio", "N/A")
pb_ratio = financials.get("pb_ratio", "N/A")
ps_ratio = financials.get("ps_ratio", "N/A")
analysis_text += f"- **P/E Ratio**: {pe_ratio}"
if pe_ratio != "N/A" and isinstance(pe_ratio, (int, float)):
if pe_ratio < 15:
analysis_text += " 🟒 (Undervalued)"
elif pe_ratio > 25:
analysis_text += " πŸ”΄ (Potentially Overvalued)"
else:
analysis_text += " 🟑 (Fairly Valued)"
analysis_text += "\n"
analysis_text += f"- **P/B Ratio**: {pb_ratio}\n"
analysis_text += f"- **P/S Ratio**: {ps_ratio}\n"
# Profitability metrics
analysis_text += f"- **ROE**: {financials.get('roe', 'N/A')}\n"
analysis_text += f"- **ROA**: {financials.get('roa', 'N/A')}\n"
analysis_text += (
f"- **Profit Margin**: {financials.get('profit_margin', 'N/A')}\n"
)
analysis_text += f"- **Revenue Growth**: {financials.get('revenue_growth', 'N/A')}\n\n"
# Performance analysis with trend indicators
performance = stock_data.get("performance", {})
if performance:
analysis_text += "## πŸ“Š **Performance Analysis**\n"
periods = ["1d", "1w", "1m", "3m", "6m", "1y", "ytd"]
for period in periods:
if period in performance:
return_pct = performance[period]
# Add trend indicators
if isinstance(return_pct, str) and "%" in return_pct:
try:
pct_value = float(return_pct.replace("%", ""))
if pct_value > 0:
trend = "πŸ“ˆ"
elif pct_value < 0:
trend = "πŸ“‰"
else:
trend = "➑️"
except:
trend = ""
else:
trend = ""
analysis_text += (
f"- **{period.upper()}**: {return_pct} {trend}\n"
)
analysis_text += "\n"
# Advanced Risk Assessment
risk_data = stock_data.get("risk_assessment", {})
if risk_data:
analysis_text += "## ⚠️ **Risk Assessment**\n"
risk_level = risk_data.get("risk_level", "N/A")
volatility = risk_data.get("volatility_30d", "N/A")
beta = risk_data.get("beta", "N/A")
# Risk level with emoji indicators
if risk_level.lower() == "low":
risk_emoji = "🟒"
elif risk_level.lower() == "medium":
risk_emoji = "🟑"
elif risk_level.lower() == "high":
risk_emoji = "πŸ”΄"
else:
risk_emoji = ""
analysis_text += f"- **Risk Level**: {risk_level} {risk_emoji}\n"
analysis_text += f"- **30-Day Volatility**: {volatility}\n"
analysis_text += f"- **Beta**: {beta}"
if beta != "N/A" and isinstance(beta, (int, float)):
if beta > 1.2:
analysis_text += " (High volatility vs market)"
elif beta < 0.8:
analysis_text += " (Low volatility vs market)"
else:
analysis_text += " (Similar to market)"
analysis_text += "\n\n"
# Technical Analysis
technical = stock_data.get("technical_analysis", {})
if technical:
analysis_text += "## πŸ“ˆ **Technical Analysis**\n"
analysis_text += f"- **50-Day MA**: {technical.get('ma_50', 'N/A')}\n"
analysis_text += f"- **200-Day MA**: {technical.get('ma_200', 'N/A')}\n"
analysis_text += f"- **RSI**: {technical.get('rsi', 'N/A')}\n"
analysis_text += (
f"- **Support Level**: {technical.get('support', 'N/A')}\n"
)
analysis_text += (
f"- **Resistance Level**: {technical.get('resistance', 'N/A')}\n\n"
)
# Investment Recommendation with detailed reasoning
recommendation = stock_data.get("recommendation", {})
if recommendation:
action = recommendation.get("action", "N/A")
confidence = recommendation.get("confidence", "N/A")
reasoning = recommendation.get("reasoning", "")
analysis_text += "## πŸ’‘ **Investment Recommendation**\n"
# Action with emoji
if action.lower() == "buy":
action_emoji = "🟒"
elif action.lower() == "sell":
action_emoji = "πŸ”΄"
elif action.lower() == "hold":
action_emoji = "🟑"
else:
action_emoji = ""
analysis_text += f"- **Action**: {action} {action_emoji}\n"
analysis_text += f"- **Confidence**: {confidence}\n"
if reasoning:
analysis_text += f"- **Reasoning**: {reasoning}\n"
analysis_text += "\n"
# Additional Investment Considerations
analysis_text += "## 🎯 **Investment Considerations**\n"
# Dividend info
dividend_yield = stock_data.get("dividend_yield", "N/A")
if dividend_yield != "N/A":
analysis_text += f"- **Dividend Yield**: {dividend_yield}\n"
# Analyst ratings
analyst_rating = stock_data.get("analyst_rating", "N/A")
if analyst_rating != "N/A":
analysis_text += f"- **Analyst Rating**: {analyst_rating}\n"
# Price targets
price_target = stock_data.get("price_target", "N/A")
if price_target != "N/A":
analysis_text += f"- **Price Target**: {price_target}\n"
# ESG score
esg_score = stock_data.get("esg_score", "N/A")
if esg_score != "N/A":
analysis_text += f"- **ESG Score**: {esg_score}\n"
return analysis_text
except Exception as e:
return f"Error analyzing stock data: {str(e)}"
return None
def determine_intended_tool(message):
"""Determine which tool the AI intends to use based on the message"""
message_lower = message.lower()
tool_detection_map = {
"budget_planner": [
"budget",
"income",
"expense",
"spending",
"allocat",
"monthly",
"plan",
"financial plan",
"money",
"track",
"categoriz",
"cost",
],
"investment_analyzer": [
"stock",
"invest",
"buy",
"sell",
"analyze",
"AAPL",
"GOOGL",
"TSLA",
"share",
"equity",
],
"portfolio_analyzer": [
"portfolio",
"holdings",
"allocation",
"diversif",
"asset",
"position",
],
"market_trends": [
"market",
"trend",
"news",
"sector",
"economic",
"latest",
"current",
],
}
tool_names = {
"budget_planner": "Budget Planner",
"investment_analyzer": "Investment Analyzer",
"market_trends": "Market Trends Analyzer",
"portfolio_analyzer": "Portfolio Analyzer",
}
for tool_key, keywords in tool_detection_map.items():
if any(keyword in message_lower for keyword in keywords):
return tool_key, tool_names.get(tool_key, tool_key)
return None, None
def determine_response_type(message):
"""Determine if user wants detailed report or short response"""
message_lower = message.lower()
# Keywords indicating detailed response preference
detailed_keywords = [
"detailed",
"detail",
"comprehensive",
"thorough",
"in-depth",
"full analysis",
"complete",
"report",
"breakdown",
"explain",
"elaborate",
"deep dive",
"extensive",
"detailed analysis",
"full report",
"comprehensive report",
]
# Keywords indicating short response preference
short_keywords = [
"quick",
"brief",
"short",
"summary",
"concise",
"simple",
"fast",
"just tell me",
"quickly",
"in short",
"tldr",
"bottom line",
]
# Check for detailed indicators first
if any(keyword in message_lower for keyword in detailed_keywords):
return "detailed"
# Check for short indicators
if any(keyword in message_lower for keyword in short_keywords):
return "short"
# Default to short response
return "short"
def process_financial_query(message, history):
"""Process user queries through the financial agent with streaming response"""
# Get the actual user message from the last entry in history
if not history or len(history) == 0:
return history
# Extract the last user message
last_user_message = None
for msg in reversed(history):
if msg["role"] == "user":
last_user_message = msg["content"]
break
if not last_user_message:
return history
# Convert Gradio history to agent format (excluding the last user message we just added)
agent_history = []
for i, msg in enumerate(history[:-1]): # Exclude the last message
agent_history.append(
{
"role": msg["role"],
"content": msg["content"]
if isinstance(msg["content"], str)
else str(msg["content"]),
}
)
# Start timer
start_time = time.time()
init_message_start_index = len(history)
try:
# Show what tool will be used and processing status
intended_tool_key, intended_tool_name = determine_intended_tool(
last_user_message
)
response_type = determine_response_type(last_user_message)
# Always show status for all tools with expected time estimates
if intended_tool_name:
if intended_tool_key == "market_trends":
status_msg = "πŸ” Fetching market news & analyzing trends (estimated 20-30 seconds)..."
elif intended_tool_key == "investment_analyzer":
status_msg = "πŸ“ˆ Analyzing stock data & calculating metrics (estimated 10-15 seconds)..."
elif intended_tool_key == "budget_planner":
status_msg = "πŸ’° Processing budget analysis (estimated 5-10 seconds)..."
elif intended_tool_key == "portfolio_analyzer":
status_msg = "πŸ“Š Analyzing portfolio data (estimated 8-12 seconds)..."
else:
status_msg = (
f"πŸ”„ Using {intended_tool_name} (estimated 5-15 seconds)..."
)
history.append(ChatMessage(role="assistant", content=status_msg))
yield history
else:
# If no tool detected, show generic processing message
history.append(
ChatMessage(
role="assistant",
content="🧠 Processing your request (estimated 10-15 seconds)...",
)
)
yield history
# Process message through agent
response, tool_used, tool_result, all_tools, all_results = (
agent.process_message_with_details(last_user_message, agent_history)
)
# Clear the processing message now that tool is complete
if len(history) > init_message_start_index:
history.pop() # Remove the processing message
# Step 5: Show tool execution results
if all_tools and all_results:
# Remove initialization messages but keep all previous conversation and tool info
history = history[:init_message_start_index]
tool_names = {
"budget_planner": "Budget Planner",
"investment_analyzer": "Investment Analyzer",
"market_trends": "Market Trends Analyzer",
"portfolio_analyzer": "Portfolio Analyzer",
}
tool_emojis = {
"Budget Planner": "πŸ’°",
"Investment Analyzer": "πŸ“ˆ",
"Market Trends Analyzer": "πŸ“°",
"Portfolio Analyzer": "πŸ“Š",
}
# Show results for all tools used
for i, (used_tool, result) in enumerate(zip(all_tools, all_results)):
tool_display_name = tool_names.get(used_tool, used_tool)
if result:
# Format tool result for display
try:
import json
if result.startswith("{") or result.startswith("["):
# Pretty format JSON output
parsed_result = json.loads(result)
# Truncate very long results for display
if len(str(parsed_result)) > 2000:
# Show summary for long results
if isinstance(parsed_result, dict):
summary = {
k: f"[{type(v).__name__}]"
if isinstance(v, (list, dict))
else v
for k, v in list(parsed_result.items())[:10]
}
display_result = f"```json\n{json.dumps(summary, indent=2)}\n... (truncated)\n```"
else:
display_result = f"```json\n{json.dumps(parsed_result, indent=2)[:1000]}...\n```"
else:
formatted_result = json.dumps(parsed_result, indent=2)
display_result = f"```json\n{formatted_result}\n```"
else:
# Truncate non-JSON results
display_result = (
result[:1000] + "..." if len(result) > 1000 else result
)
except Exception:
display_result = (
str(result)[:1000] + "..."
if len(str(result)) > 1000
else str(result)
)
tool_emoji = tool_emojis.get(tool_display_name, "πŸ”§")
collapsible_content = f"""
<details>
<summary><strong>{tool_emoji} {tool_display_name} Results</strong> - Click to expand</summary>
{display_result}
</details>
"""
history.append(
ChatMessage(
role="assistant",
content=collapsible_content,
)
)
yield history
# Add visualization for all applicable tools
if all_tools and all_results:
for used_tool, result in zip(all_tools, all_results):
if result and used_tool in [
"budget_planner",
"portfolio_analyzer",
"investment_analyzer",
]:
viz_type = {
"budget_planner": "budget",
"portfolio_analyzer": "portfolio",
"investment_analyzer": "stock",
}.get(used_tool)
try:
analysis_data = analyze_data_with_repl(viz_type, result)
if analysis_data:
tool_display_name = {
"budget_planner": "Budget",
"portfolio_analyzer": "Portfolio",
"investment_analyzer": "Stock",
}.get(used_tool, "Data")
# Create collapsible data analysis output
collapsible_analysis = f"""
<details>
<summary><strong>πŸ” {tool_display_name} Data Analysis</strong> - Click to expand</summary>
{analysis_data}
</details>
"""
history.append(
ChatMessage(
role="assistant",
content=collapsible_analysis,
)
)
yield history
except Exception:
# Silently continue if analysis fails
pass
# Stream the final response in real-time using LLM streaming
if tool_used and tool_result:
# Use real LLM streaming with response type
streaming_content = ""
history.append(ChatMessage(role="assistant", content=""))
for chunk in agent.stream_response(
last_user_message, tool_result, tool_used, response_type
):
streaming_content += chunk
history[-1] = ChatMessage(role="assistant", content=streaming_content)
yield history
else:
# Fallback for non-streaming response
history.append(ChatMessage(role="assistant", content=response))
yield history
elapsed = time.time() - start_time
except Exception as e:
elapsed = time.time() - start_time
history[-1] = ChatMessage(
role="assistant",
content=f"I encountered an error while processing your request: {str(e)}. Please try rephrasing your question.",
metadata={"title": f"πŸ’₯ Error ({elapsed:.1f}s)"},
)
yield history
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Base(), title="Financial Advisory Agent") as demo:
gr.HTML("""<center><img src="/gradio_api/file=public/images/fin_logo.png" alt="Fin Logo" style="width: 50px; vertical-align: middle;">
<h1 style="text-align: center;">AI Financial Advisory Agent</h1>
Your AI-powered financial advisor for budgeting, investments, portfolio analysis, and market trends.
</center>
""")
chatbot = gr.Chatbot(
type="messages",
scale=2,
height=400,
avatar_images=AVATAR_IMAGES,
show_copy_button=True,
)
with gr.Row(equal_height=True):
msg = gr.Textbox(
placeholder="Ask me about budgeting, investments, or any financial topic...",
show_label=False,
scale=19,
autofocus=True,
)
submit = gr.Button("Send", variant="primary", scale=1, min_width=60)
# Example queries
example_queries = [
"Analyze AAPL stock and tell me if it's a good investment",
"Help me create a budget with $5000 monthly income and expenses: rent $1500, food $500, utilities $200",
"What are the latest market trends in tech stocks?",
"Analyze my portfolio: {'holdings': [{'symbol': 'AAPL', 'shares': 100}, {'symbol': 'GOOGL', 'shares': 50}]}",
]
gr.Examples(examples=example_queries, inputs=msg, label="Example Queries")
# Handle message submission
def user_submit(message, history):
if not message.strip():
return "", history, gr.update(interactive=True), gr.update(interactive=True)
history = history + [ChatMessage(role="user", content=message)]
return "", history, gr.update(interactive=False), gr.update(interactive=False)
def enable_input():
return gr.update(interactive=True), gr.update(interactive=True)
# Connect events
submit_event = (
msg.submit(user_submit, [msg, chatbot], [msg, chatbot, msg, submit])
.then(process_financial_query, [msg, chatbot], chatbot)
.then(enable_input, [], [msg, submit])
)
click_event = (
submit.click(user_submit, [msg, chatbot], [msg, chatbot, msg, submit])
.then(process_financial_query, [msg, chatbot], chatbot)
.then(enable_input, [], [msg, submit])
)
# Add like functionality for feedback
def like_handler(evt: gr.LikeData):
pass
chatbot.like(like_handler)
if __name__ == "__main__":
demo.launch(ssr_mode=False)