Financial-Advisory-Agent / agents /financial_agent.py
Abid Ali Awan
Refactor portfolio analyzer in FinancialTools: simplified input extraction and handling, improved default portfolio logic, and enhanced analysis output with basic recommendations for diversification.
27965d3
raw
history blame
10.7 kB
import json
import operator
import re
from typing import Annotated, List, Tuple, TypedDict, Union
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.tools import Tool
from langchain_openai import ChatOpenAI
class AgentState(TypedDict):
messages: Annotated[List[Union[HumanMessage, AIMessage]], operator.add]
context: dict
class FinancialAdvisorAgent:
def __init__(self, tools: List[Tool], openai_api_key: str):
self.tools = tools
self.llm = ChatOpenAI(
api_key=openai_api_key, model="gpt-4.1-mini-2025-04-14", temperature=0.7
)
self.tools_by_name = {tool.name: tool for tool in tools}
# Create agent with tools
self.system_prompt = """You are a professional financial advisor AI assistant with access to specialized tools.
Available tools:
- budget_planner: Use when users ask about budgeting, income allocation, or expense planning. Input should be JSON with 'income' and 'expenses' keys.
- investment_analyzer: Use when users ask about specific stocks or investments. Input should be a stock symbol (e.g., AAPL).
- market_trends: Use when users ask about market trends or financial news. Input should be a search query.
- portfolio_analyzer: Use when users want to analyze their portfolio. Input should be JSON with 'holdings' array.
IMPORTANT: You MUST use these tools when answering financial questions. Do not provide generic advice without using the appropriate tool first.
When a user asks a question:
1. Identify which tool is most appropriate
2. Extract or request the necessary information
3. Use the tool to get specific data
4. Provide advice based on the tool's output"""
self.prompt = ChatPromptTemplate.from_messages(
[
("system", self.system_prompt),
MessagesPlaceholder(variable_name="messages"),
("human", "{input}"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
)
self.agent = create_openai_tools_agent(self.llm, self.tools, self.prompt)
self.agent_executor = AgentExecutor(
agent=self.agent,
tools=self.tools,
verbose=True,
return_intermediate_steps=True,
)
def _extract_tool_usage(self, intermediate_steps):
"""Extract tool usage from intermediate steps"""
tools_used = []
tool_results = []
for action, result in intermediate_steps:
if hasattr(action, "tool"):
tools_used.append(action.tool)
tool_results.append(result)
# Return the last tool used and its result for backward compatibility
# But also return all tools and results for multi-tool scenarios
if tools_used:
return tools_used[-1], tool_results[-1], tools_used, tool_results
return None, None, [], []
def _prepare_tool_input(self, message: str, tool_name: str) -> str:
"""Prepare input for specific tools based on the message"""
if tool_name == "investment_analyzer":
# Extract stock symbols
symbols = re.findall(r"\b[A-Z]{2,5}\b", message)
if symbols:
return symbols[0]
return "AAPL" # Default
elif tool_name == "budget_planner":
# Try to extract income and expenses from message
income_match = re.search(
r"\$?(\d+(?:,\d{3})*(?:\.\d{2})?)\s*(?:monthly\s*)?income",
message,
re.I,
)
income = (
float(income_match.group(1).replace(",", "")) if income_match else 5000
)
# Extract expenses
expenses = {}
expense_patterns = [
(r"rent:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "rent"),
(r"food:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "food"),
(r"utilities:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)", "utilities"),
(
r"transportation:?\s*\$?(\d+(?:,\d{3})*(?:\.\d{2})?)",
"transportation",
),
]
for pattern, category in expense_patterns:
match = re.search(pattern, message, re.I)
if match:
expenses[category] = float(match.group(1).replace(",", ""))
return json.dumps({"income": income, "expenses": expenses})
elif tool_name == "portfolio_analyzer":
return message
elif tool_name == "market_trends":
return message
return message
def process_message_with_details(
self, message: str, history: List[dict] = None
) -> Tuple[str, str, str, List[str], List[str]]:
"""Process a message and return response, tool used, tool result, and all tools/results"""
if history is None:
history = []
# Check if this is a multi-tool query (contains keywords for multiple tools)
message_lower = message.lower()
tool_keywords = {
"budget_planner": ["budget", "income", "expense", "spending", "allocat", "track", "categoriz"],
"investment_analyzer": ["stock", "invest", "buy", "sell", "analyze"],
"portfolio_analyzer": ["portfolio", "holdings", "allocation", "diversif"],
"market_trends": ["market", "trend", "news", "sector", "economic"]
}
detected_tools = []
for tool_name, keywords in tool_keywords.items():
if any(word in message_lower for word in keywords):
# Special check for investment analyzer - needs stock symbols
if tool_name == "investment_analyzer":
if re.search(r"\b[A-Z]{2,5}\b", message) or any(word in message_lower for word in ["stock", "invest", "recommend"]):
detected_tools.append(tool_name)
else:
detected_tools.append(tool_name)
# If multiple tools detected or complex query, use agent executor
if len(detected_tools) > 1 or len(message.split()) > 15:
try:
result = self.agent_executor.invoke({"input": message, "messages": []})
tool_used, tool_result, all_tools, all_results = self._extract_tool_usage(
result.get("intermediate_steps", [])
)
return result["output"], tool_used, tool_result, all_tools, all_results
except Exception as e:
return (
f"I encountered an error processing your request: {str(e)}",
None,
None,
[],
[]
)
# Single tool execution for simple queries
elif len(detected_tools) == 1:
selected_tool = detected_tools[0]
try:
tool = self.tools_by_name[selected_tool]
tool_input = self._prepare_tool_input(message, selected_tool)
# Execute the tool
tool_result = tool.func(tool_input)
# Generate response based on tool result - optimized for speed
response_prompt = f"""Based on this {selected_tool.replace('_', ' ')} analysis, provide a concise financial summary for: {message}
Data: {tool_result}
Keep response under 200 words with key insights and 2-3 actionable recommendations."""
response = self.llm.invoke(
[
SystemMessage(content="Financial advisor. Be concise and actionable."),
HumanMessage(content=response_prompt),
]
)
return response.content, selected_tool, tool_result, [selected_tool], [tool_result]
except Exception as e:
return f"Error using {selected_tool}: {str(e)}", selected_tool, None, [], []
# Fallback to agent executor for unclear queries
else:
try:
result = self.agent_executor.invoke({"input": message, "messages": []})
tool_used, tool_result, all_tools, all_results = self._extract_tool_usage(
result.get("intermediate_steps", [])
)
return result["output"], tool_used, tool_result, all_tools, all_results
except Exception as e:
return (
f"I encountered an error processing your request: {str(e)}",
None,
None,
[],
[]
)
def process_message(self, message: str, history: List[dict] = None):
"""Process a user message and return response"""
response, _, _, _, _ = self.process_message_with_details(message, history)
return response
def stream_response(self, message: str, tool_result: str, selected_tool: str, response_type: str = "short"):
"""Stream the LLM response in real-time"""
if response_type == "detailed":
response_prompt = f"""Based on the following comprehensive analysis from the {selected_tool.replace('_', ' ').title()}:
{tool_result}
Provide detailed financial advice to the user addressing their question: {message}
Guidelines:
- Be thorough and comprehensive
- Reference specific data points from the analysis
- Provide clear, actionable recommendations with explanations
- Include multiple scenarios or considerations where relevant
- Use a professional but friendly tone
- Structure your response with clear sections
- Provide context for your recommendations"""
system_message = "You are a professional financial advisor. Provide comprehensive, detailed advice based on the analysis results. Be thorough and educational."
else:
response_prompt = f"""Based on this {selected_tool.replace('_', ' ')} analysis, provide a concise financial summary for: {message}
Data: {tool_result}
Keep response under 200 words with key insights and 2-3 actionable recommendations."""
system_message = "Financial advisor. Be concise and actionable."
messages = [
SystemMessage(content=system_message),
HumanMessage(content=response_prompt),
]
# Stream the response token by token
for chunk in self.llm.stream(messages):
if chunk.content:
yield chunk.content