asammoud
add redetr
3f2c461
# ------------------------------------------------------------------------
# RF-DETR
# Copyright (c) 2025 Roboflow. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from LW-DETR (https://github.com/Atten4Vis/LW-DETR)
# Copyright (c) 2024 Baidu. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Conditional DETR (https://github.com/Atten4Vis/ConditionalDETR)
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------
"""
cleaned main file
"""
import argparse
import ast
import copy
import datetime
import json
import math
import os
import random
import shutil
import time
from copy import deepcopy
from logging import getLogger
from pathlib import Path
from typing import DefaultDict, List, Callable
import numpy as np
import torch
from peft import LoraConfig, get_peft_model
from torch.utils.data import DataLoader, DistributedSampler
import rfdetr.util.misc as utils
from rfdetr.datasets import build_dataset, get_coco_api_from_dataset
from rfdetr.engine import evaluate, train_one_epoch
from rfdetr.models import build_model, build_criterion_and_postprocessors
from rfdetr.util.benchmark import benchmark
from rfdetr.util.drop_scheduler import drop_scheduler
from rfdetr.util.files import download_file
from rfdetr.util.get_param_dicts import get_param_dict
from rfdetr.util.utils import ModelEma, BestMetricHolder, clean_state_dict
if str(os.environ.get("USE_FILE_SYSTEM_SHARING", "False")).lower() in ["true", "1"]:
import torch.multiprocessing
torch.multiprocessing.set_sharing_strategy('file_system')
logger = getLogger(__name__)
HOSTED_MODELS = {
"rf-detr-base.pth": "https://storage.googleapis.com/rfdetr/rf-detr-base-coco.pth",
# below is a less converged model that may be better for finetuning but worse for inference
"rf-detr-base-2.pth": "https://storage.googleapis.com/rfdetr/rf-detr-base-2.pth",
"rf-detr-large.pth": "https://storage.googleapis.com/rfdetr/rf-detr-large.pth"
}
def download_pretrain_weights(pretrain_weights: str, redownload=False):
if pretrain_weights in HOSTED_MODELS:
if redownload or not os.path.exists(pretrain_weights):
logger.info(
f"Downloading pretrained weights for {pretrain_weights}"
)
download_file(
HOSTED_MODELS[pretrain_weights],
pretrain_weights,
)
class Model:
def __init__(self, **kwargs):
args = populate_args(**kwargs)
self.resolution = args.resolution
self.model = build_model(args)
self.device = torch.device(args.device)
if args.pretrain_weights is not None:
print("Loading pretrain weights")
try:
checkpoint = torch.load(args.pretrain_weights, map_location='cpu', weights_only=False)
except Exception as e:
print(f"Failed to load pretrain weights: {e}")
# re-download weights if they are corrupted
print("Failed to load pretrain weights, re-downloading")
download_pretrain_weights(args.pretrain_weights, redownload=True)
checkpoint = torch.load(args.pretrain_weights, map_location='cpu', weights_only=False)
# Extract class_names from checkpoint if available
if 'args' in checkpoint and hasattr(checkpoint['args'], 'class_names'):
self.class_names = checkpoint['args'].class_names
checkpoint_num_classes = checkpoint['model']['class_embed.bias'].shape[0]
if checkpoint_num_classes != args.num_classes + 1:
logger.warning(
f"num_classes mismatch: pretrain weights has {checkpoint_num_classes - 1} classes, but your model has {args.num_classes} classes\n"
f"reinitializing detection head with {checkpoint_num_classes - 1} classes"
)
self.reinitialize_detection_head(checkpoint_num_classes)
# add support to exclude_keys
# e.g., when load object365 pretrain, do not load `class_embed.[weight, bias]`
if args.pretrain_exclude_keys is not None:
assert isinstance(args.pretrain_exclude_keys, list)
for exclude_key in args.pretrain_exclude_keys:
checkpoint['model'].pop(exclude_key)
if args.pretrain_keys_modify_to_load is not None:
from util.obj365_to_coco_model import get_coco_pretrain_from_obj365
assert isinstance(args.pretrain_keys_modify_to_load, list)
for modify_key_to_load in args.pretrain_keys_modify_to_load:
try:
checkpoint['model'][modify_key_to_load] = get_coco_pretrain_from_obj365(
model_without_ddp.state_dict()[modify_key_to_load],
checkpoint['model'][modify_key_to_load]
)
except:
print(f"Failed to load {modify_key_to_load}, deleting from checkpoint")
checkpoint['model'].pop(modify_key_to_load)
# we may want to resume training with a smaller number of groups for group detr
num_desired_queries = args.num_queries * args.group_detr
query_param_names = ["refpoint_embed.weight", "query_feat.weight"]
for name, state in checkpoint['model'].items():
if any(name.endswith(x) for x in query_param_names):
checkpoint['model'][name] = state[:num_desired_queries]
self.model.load_state_dict(checkpoint['model'], strict=False)
if args.backbone_lora:
print("Applying LORA to backbone")
lora_config = LoraConfig(
r=16,
lora_alpha=16,
use_dora=True,
target_modules=[
"q_proj", "v_proj", "k_proj", # covers OWL-ViT
"qkv", # covers open_clip ie Siglip2
"query", "key", "value", "cls_token", "register_tokens", # covers Dinov2 with windowed attn
]
)
self.model.backbone[0].encoder = get_peft_model(self.model.backbone[0].encoder, lora_config)
self.model = self.model.to(self.device)
self.criterion, self.postprocessors = build_criterion_and_postprocessors(args)
self.stop_early = False
def reinitialize_detection_head(self, num_classes):
self.model.reinitialize_detection_head(num_classes)
def request_early_stop(self):
self.stop_early = True
print("Early stopping requested, will complete current epoch and stop")
def train(self, callbacks: DefaultDict[str, List[Callable]], **kwargs):
currently_supported_callbacks = ["on_fit_epoch_end", "on_train_batch_start", "on_train_end"]
for key in callbacks.keys():
if key not in currently_supported_callbacks:
raise ValueError(
f"Callback {key} is not currently supported, please file an issue if you need it!\n"
f"Currently supported callbacks: {currently_supported_callbacks}"
)
args = populate_args(**kwargs)
utils.init_distributed_mode(args)
print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
criterion, postprocessors = build_criterion_and_postprocessors(args)
model = self.model
model.to(device)
model_without_ddp = model
if args.distributed:
if args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = get_param_dict(args, model_without_ddp)
param_dicts = [p for p in param_dicts if p['params'].requires_grad]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
# Choose the learning rate scheduler based on the new argument
dataset_train = build_dataset(image_set='train', args=args, resolution=args.resolution)
dataset_val = build_dataset(image_set='val', args=args, resolution=args.resolution)
# for cosine annealing, calculate total training steps and warmup steps
total_batch_size_for_lr = args.batch_size * utils.get_world_size() * args.grad_accum_steps
num_training_steps_per_epoch_lr = (len(dataset_train) + total_batch_size_for_lr - 1) // total_batch_size_for_lr
total_training_steps_lr = num_training_steps_per_epoch_lr * args.epochs
warmup_steps_lr = num_training_steps_per_epoch_lr * args.warmup_epochs
def lr_lambda(current_step: int):
if current_step < warmup_steps_lr:
# Linear warmup
return float(current_step) / float(max(1, warmup_steps_lr))
else:
# Cosine annealing from multiplier 1.0 down to lr_min_factor
if args.lr_scheduler == 'cosine':
progress = float(current_step - warmup_steps_lr) / float(max(1, total_training_steps_lr - warmup_steps_lr))
return args.lr_min_factor + (1 - args.lr_min_factor) * 0.5 * (1 + math.cos(math.pi * progress))
elif args.lr_scheduler == 'step':
if current_step < args.lr_drop * num_training_steps_per_epoch_lr:
return 1.0
else:
return 0.1
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
effective_batch_size = args.batch_size * args.grad_accum_steps
min_batches = kwargs.get('min_batches', 5)
if len(dataset_train) < effective_batch_size * min_batches:
logger.info(
f"Training with uniform sampler because dataset is too small: {len(dataset_train)} < {effective_batch_size * min_batches}"
)
sampler = torch.utils.data.RandomSampler(
dataset_train,
replacement=True,
num_samples=effective_batch_size * min_batches,
)
data_loader_train = DataLoader(
dataset_train,
batch_size=effective_batch_size,
collate_fn=utils.collate_fn,
num_workers=args.num_workers,
sampler=sampler,
)
else:
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, effective_batch_size, drop_last=True)
data_loader_train = DataLoader(
dataset_train,
batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn,
num_workers=args.num_workers
)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn,
num_workers=args.num_workers)
base_ds = get_coco_api_from_dataset(dataset_val)
if args.use_ema:
self.ema_m = ModelEma(model_without_ddp, decay=args.ema_decay, tau=args.ema_tau)
else:
self.ema_m = None
output_dir = Path(args.output_dir)
if utils.is_main_process():
print("Get benchmark")
if args.do_benchmark:
benchmark_model = copy.deepcopy(model_without_ddp)
bm = benchmark(benchmark_model.float(), dataset_val, output_dir)
print(json.dumps(bm, indent=2))
del benchmark_model
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu', weights_only=False)
model_without_ddp.load_state_dict(checkpoint['model'], strict=True)
if args.use_ema:
if 'ema_model' in checkpoint:
self.ema_m.module.load_state_dict(clean_state_dict(checkpoint['ema_model']))
else:
del self.ema_m
self.ema_m = ModelEma(model, decay=args.ema_decay, tau=args.ema_tau)
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args)
if args.output_dir:
utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
return
# for drop
total_batch_size = effective_batch_size * utils.get_world_size()
num_training_steps_per_epoch = (len(dataset_train) + total_batch_size - 1) // total_batch_size
schedules = {}
if args.dropout > 0:
schedules['do'] = drop_scheduler(
args.dropout, args.epochs, num_training_steps_per_epoch,
args.cutoff_epoch, args.drop_mode, args.drop_schedule)
print("Min DO = %.7f, Max DO = %.7f" % (min(schedules['do']), max(schedules['do'])))
if args.drop_path > 0:
schedules['dp'] = drop_scheduler(
args.drop_path, args.epochs, num_training_steps_per_epoch,
args.cutoff_epoch, args.drop_mode, args.drop_schedule)
print("Min DP = %.7f, Max DP = %.7f" % (min(schedules['dp']), max(schedules['dp'])))
print("Start training")
start_time = time.time()
best_map_holder = BestMetricHolder(use_ema=args.use_ema)
best_map_5095 = 0
best_map_50 = 0
best_map_ema_5095 = 0
best_map_ema_50 = 0
for epoch in range(args.start_epoch, args.epochs):
epoch_start_time = time.time()
if args.distributed:
sampler_train.set_epoch(epoch)
model.train()
criterion.train()
train_stats = train_one_epoch(
model, criterion, lr_scheduler, data_loader_train, optimizer, device, epoch,
effective_batch_size, args.clip_max_norm, ema_m=self.ema_m, schedules=schedules,
num_training_steps_per_epoch=num_training_steps_per_epoch,
vit_encoder_num_layers=args.vit_encoder_num_layers, args=args, callbacks=callbacks)
train_epoch_time = time.time() - epoch_start_time
train_epoch_time_str = str(datetime.timedelta(seconds=int(train_epoch_time)))
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every `checkpoint_interval` epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.checkpoint_interval == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
weights = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}
if args.use_ema:
weights.update({
'ema_model': self.ema_m.module.state_dict(),
})
if not args.dont_save_weights:
# create checkpoint dir
checkpoint_path.parent.mkdir(parents=True, exist_ok=True)
utils.save_on_master(weights, checkpoint_path)
with torch.inference_mode():
test_stats, coco_evaluator = evaluate(
model, criterion, postprocessors, data_loader_val, base_ds, device, args=args
)
map_regular = test_stats['coco_eval_bbox'][0]
_isbest = best_map_holder.update(map_regular, epoch, is_ema=False)
if _isbest:
best_map_5095 = max(best_map_5095, map_regular)
best_map_50 = max(best_map_50, test_stats["coco_eval_bbox"][1])
checkpoint_path = output_dir / 'checkpoint0009.pth'
if not args.dont_save_weights:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.use_ema:
ema_test_stats, _ = evaluate(
self.ema_m.module, criterion, postprocessors, data_loader_val, base_ds, device, args=args
)
log_stats.update({f'ema_test_{k}': v for k,v in ema_test_stats.items()})
map_ema = ema_test_stats['coco_eval_bbox'][0]
best_map_ema_5095 = max(best_map_ema_5095, map_ema)
_isbest = best_map_holder.update(map_ema, epoch, is_ema=True)
if _isbest:
best_map_ema_50 = max(best_map_ema_50, ema_test_stats["coco_eval_bbox"][1])
checkpoint_path = output_dir / 'checkpoint_best_ema.pth'
if not args.dont_save_weights:
utils.save_on_master({
'model': self.ema_m.module.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats.update(best_map_holder.summary())
# epoch parameters
ep_paras = {
'epoch': epoch,
'n_parameters': n_parameters
}
log_stats.update(ep_paras)
try:
log_stats.update({'now_time': str(datetime.datetime.now())})
except:
pass
log_stats['train_epoch_time'] = train_epoch_time_str
epoch_time = time.time() - epoch_start_time
epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
log_stats['epoch_time'] = epoch_time_str
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# for evaluation logs
if coco_evaluator is not None:
(output_dir / 'eval').mkdir(exist_ok=True)
if "bbox" in coco_evaluator.coco_eval:
filenames = ['latest.pth']
if epoch % 50 == 0:
filenames.append(f'{epoch:03}.pth')
for name in filenames:
torch.save(coco_evaluator.coco_eval["bbox"].eval,
output_dir / "eval" / name)
for callback in callbacks["on_fit_epoch_end"]:
callback(log_stats)
if self.stop_early:
print(f"Early stopping requested, stopping at epoch {epoch}")
break
best_is_ema = best_map_ema_5095 > best_map_5095
if utils.is_main_process():
if best_is_ema:
shutil.copy2(output_dir / 'checkpoint_best_ema.pth', output_dir / 'checkpoint_best_total.pth')
else:
shutil.copy2(output_dir / 'checkpoint0009.pth', output_dir / 'checkpoint_best_total.pth')
utils.strip_checkpoint(output_dir / 'checkpoint_best_total.pth')
best_map_5095 = max(best_map_5095, best_map_ema_5095)
best_map_50 = max(best_map_50, best_map_ema_50)
results_json = {
"map95": best_map_5095,
"map50": best_map_50,
"class": "all"
}
results = {
"class_map": {
"valid": [
results_json
]
}
}
with open(output_dir / "results.json", "w") as f:
json.dump(results, f)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print('Results saved to {}'.format(output_dir / "results.json"))
if best_is_ema:
self.model = self.ema_m.module
self.model.eval()
for callback in callbacks["on_train_end"]:
callback()
def export(self, output_dir="output", infer_dir=None, simplify=False, backbone_only=False, opset_version=17, verbose=True, force=False, shape=None, batch_size=1, **kwargs):
"""Export the trained model to ONNX format"""
print(f"Exporting model to ONNX format")
try:
from rfdetr.deploy.export import export_onnx, onnx_simplify, make_infer_image
except ImportError:
print("It seems some dependencies for ONNX export are missing. Please run `pip install rfdetr[onnxexport]` and try again.")
raise
device = self.device
model = deepcopy(self.model.to("cpu"))
model.to(device)
os.makedirs(output_dir, exist_ok=True)
output_dir = Path(output_dir)
if shape is None:
shape = (self.resolution, self.resolution)
else:
if shape[0] % 14 != 0 or shape[1] % 14 != 0:
raise ValueError("Shape must be divisible by 14")
input_tensors = make_infer_image(infer_dir, shape, batch_size, device).to(device)
input_names = ['input']
output_names = ['features'] if backbone_only else ['dets', 'labels']
dynamic_axes = None
self.model.eval()
with torch.no_grad():
if backbone_only:
features = model(input_tensors)
print(f"PyTorch inference output shape: {features.shape}")
else:
outputs = model(input_tensors)
dets = outputs['pred_boxes']
labels = outputs['pred_logits']
print(f"PyTorch inference output shapes - Boxes: {dets.shape}, Labels: {labels.shape}")
model.cpu()
input_tensors = input_tensors.cpu()
# Export to ONNX
output_file = export_onnx(
output_dir=output_dir,
model=model,
input_names=input_names,
input_tensors=input_tensors,
output_names=output_names,
dynamic_axes=dynamic_axes,
backbone_only=backbone_only,
verbose=verbose,
opset_version=opset_version
)
print(f"Successfully exported ONNX model to: {output_file}")
if simplify:
sim_output_file = onnx_simplify(
onnx_dir=output_file,
input_names=input_names,
input_tensors=input_tensors,
force=force
)
print(f"Successfully simplified ONNX model to: {sim_output_file}")
print("ONNX export completed successfully")
self.model = self.model.to(device)
if __name__ == '__main__':
parser = argparse.ArgumentParser('LWDETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
config = vars(args) # Convert Namespace to dictionary
if args.subcommand == 'distill':
distill(**config)
elif args.subcommand is None:
main(**config)
elif args.subcommand == 'export_model':
filter_keys = [
"num_classes",
"grad_accum_steps",
"lr",
"lr_encoder",
"weight_decay",
"epochs",
"lr_drop",
"clip_max_norm",
"lr_vit_layer_decay",
"lr_component_decay",
"dropout",
"drop_path",
"drop_mode",
"drop_schedule",
"cutoff_epoch",
"pretrained_encoder",
"pretrain_weights",
"pretrain_exclude_keys",
"pretrain_keys_modify_to_load",
"freeze_florence",
"freeze_aimv2",
"decoder_norm",
"set_cost_class",
"set_cost_bbox",
"set_cost_giou",
"cls_loss_coef",
"bbox_loss_coef",
"giou_loss_coef",
"focal_alpha",
"aux_loss",
"sum_group_losses",
"use_varifocal_loss",
"use_position_supervised_loss",
"ia_bce_loss",
"dataset_file",
"coco_path",
"dataset_dir",
"square_resize_div_64",
"output_dir",
"checkpoint_interval",
"seed",
"resume",
"start_epoch",
"eval",
"use_ema",
"ema_decay",
"ema_tau",
"num_workers",
"device",
"world_size",
"dist_url",
"sync_bn",
"fp16_eval",
"infer_dir",
"verbose",
"opset_version",
"dry_run",
"shape",
]
for key in filter_keys:
config.pop(key, None) # Use pop with None to avoid KeyError
from deploy.export import main as export_main
if args.batch_size != 1:
config['batch_size'] = 1
print(f"Only batch_size 1 is supported for onnx export, \
but got batchsize = {args.batch_size}. batch_size is forcibly set to 1.")
export_main(**config)
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--num_classes', default=2, type=int)
parser.add_argument('--grad_accum_steps', default=1, type=int)
parser.add_argument('--amp', default=False, type=bool)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_encoder', default=1.5e-4, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=12, type=int)
parser.add_argument('--lr_drop', default=11, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--lr_vit_layer_decay', default=0.8, type=float)
parser.add_argument('--lr_component_decay', default=1.0, type=float)
parser.add_argument('--do_benchmark', action='store_true', help='benchmark the model')
# drop args
# dropout and stochastic depth drop rate; set at most one to non-zero
parser.add_argument('--dropout', type=float, default=0,
help='Drop path rate (default: 0.0)')
parser.add_argument('--drop_path', type=float, default=0,
help='Drop path rate (default: 0.0)')
# early / late dropout and stochastic depth settings
parser.add_argument('--drop_mode', type=str, default='standard',
choices=['standard', 'early', 'late'], help='drop mode')
parser.add_argument('--drop_schedule', type=str, default='constant',
choices=['constant', 'linear'],
help='drop schedule for early dropout / s.d. only')
parser.add_argument('--cutoff_epoch', type=int, default=0,
help='if drop_mode is early / late, this is the epoch where dropout ends / starts')
# Model parameters
parser.add_argument('--pretrained_encoder', type=str, default=None,
help="Path to the pretrained encoder.")
parser.add_argument('--pretrain_weights', type=str, default=None,
help="Path to the pretrained model.")
parser.add_argument('--pretrain_exclude_keys', type=str, default=None, nargs='+',
help="Keys you do not want to load.")
parser.add_argument('--pretrain_keys_modify_to_load', type=str, default=None, nargs='+',
help="Keys you want to modify to load. Only used when loading objects365 pre-trained weights.")
# * Backbone
parser.add_argument('--encoder', default='vit_tiny', type=str,
help="Name of the transformer or convolutional encoder to use")
parser.add_argument('--vit_encoder_num_layers', default=12, type=int,
help="Number of layers used in ViT encoder")
parser.add_argument('--window_block_indexes', default=None, type=int, nargs='+')
parser.add_argument('--position_embedding', default='sine', type=str,
choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--out_feature_indexes', default=[-1], type=int, nargs='+', help='only for vit now')
parser.add_argument("--freeze_encoder", action="store_true", dest="freeze_encoder")
parser.add_argument("--layer_norm", action="store_true", dest="layer_norm")
parser.add_argument("--rms_norm", action="store_true", dest="rms_norm")
parser.add_argument("--backbone_lora", action="store_true", dest="backbone_lora")
parser.add_argument("--force_no_pretrain", action="store_true", dest="force_no_pretrain")
# * Transformer
parser.add_argument('--dec_layers', default=3, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--sa_nheads', default=8, type=int,
help="Number of attention heads inside the transformer's self-attentions")
parser.add_argument('--ca_nheads', default=8, type=int,
help="Number of attention heads inside the transformer's cross-attentions")
parser.add_argument('--num_queries', default=300, type=int,
help="Number of query slots")
parser.add_argument('--group_detr', default=13, type=int,
help="Number of groups to speed up detr training")
parser.add_argument('--two_stage', action='store_true')
parser.add_argument('--projector_scale', default='P4', type=str, nargs='+', choices=('P3', 'P4', 'P5', 'P6'))
parser.add_argument('--lite_refpoint_refine', action='store_true', help='lite refpoint refine mode for speed-up')
parser.add_argument('--num_select', default=100, type=int,
help='the number of predictions selected for evaluation')
parser.add_argument('--dec_n_points', default=4, type=int,
help='the number of sampling points')
parser.add_argument('--decoder_norm', default='LN', type=str)
parser.add_argument('--bbox_reparam', action='store_true')
parser.add_argument('--freeze_batch_norm', action='store_true')
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
parser.add_argument('--sum_group_losses', action='store_true',
help="To sum losses across groups or mean losses.")
parser.add_argument('--use_varifocal_loss', action='store_true')
parser.add_argument('--use_position_supervised_loss', action='store_true')
parser.add_argument('--ia_bce_loss', action='store_true')
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--dataset_dir', type=str)
parser.add_argument('--square_resize_div_64', action='store_true')
parser.add_argument('--output_dir', default='output',
help='path where to save, empty for no saving')
parser.add_argument('--dont_save_weights', action='store_true')
parser.add_argument('--checkpoint_interval', default=10, type=int,
help='epoch interval to save checkpoint')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--use_ema', action='store_true')
parser.add_argument('--ema_decay', default=0.9997, type=float)
parser.add_argument('--ema_tau', default=0, type=float)
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--sync_bn', default=True, type=bool,
help='setup synchronized BatchNorm for distributed training')
# fp16
parser.add_argument('--fp16_eval', default=False, action='store_true',
help='evaluate in fp16 precision.')
# custom args
parser.add_argument('--encoder_only', action='store_true', help='Export and benchmark encoder only')
parser.add_argument('--backbone_only', action='store_true', help='Export and benchmark backbone only')
parser.add_argument('--resolution', type=int, default=640, help="input resolution")
parser.add_argument('--use_cls_token', action='store_true', help='use cls token')
parser.add_argument('--multi_scale', action='store_true', help='use multi scale')
parser.add_argument('--expanded_scales', action='store_true', help='use expanded scales')
parser.add_argument('--warmup_epochs', default=1, type=float,
help='Number of warmup epochs for linear warmup before cosine annealing')
# Add scheduler type argument: 'step' or 'cosine'
parser.add_argument(
'--lr_scheduler',
default='step',
choices=['step', 'cosine'],
help="Type of learning rate scheduler to use: 'step' (default) or 'cosine'"
)
parser.add_argument('--lr_min_factor', default=0.0, type=float,
help='Minimum learning rate factor (as a fraction of initial lr) at the end of cosine annealing')
# Early stopping parameters
parser.add_argument('--early_stopping', action='store_true',
help='Enable early stopping based on mAP improvement')
parser.add_argument('--early_stopping_patience', default=10, type=int,
help='Number of epochs with no improvement after which training will be stopped')
parser.add_argument('--early_stopping_min_delta', default=0.001, type=float,
help='Minimum change in mAP to qualify as an improvement')
parser.add_argument('--early_stopping_use_ema', action='store_true',
help='Use EMA model metrics for early stopping')
# subparsers
subparsers = parser.add_subparsers(title='sub-commands', dest='subcommand',
description='valid subcommands', help='additional help')
# subparser for export model
parser_export = subparsers.add_parser('export_model', help='LWDETR model export')
parser_export.add_argument('--infer_dir', type=str, default=None)
parser_export.add_argument('--verbose', type=ast.literal_eval, default=False, nargs="?", const=True)
parser_export.add_argument('--opset_version', type=int, default=17)
parser_export.add_argument('--simplify', action='store_true', help="Simplify onnx model")
parser_export.add_argument('--tensorrt', '--trtexec', '--trt', action='store_true',
help="build tensorrt engine")
parser_export.add_argument('--dry-run', '--test', '-t', action='store_true', help="just print command")
parser_export.add_argument('--profile', action='store_true', help='Run nsys profiling during TensorRT export')
parser_export.add_argument('--shape', type=int, nargs=2, default=(640, 640), help="input shape (width, height)")
return parser
def populate_args(
# Basic training parameters
num_classes=2,
grad_accum_steps=1,
amp=False,
lr=1e-4,
lr_encoder=1.5e-4,
batch_size=2,
weight_decay=1e-4,
epochs=12,
lr_drop=11,
clip_max_norm=0.1,
lr_vit_layer_decay=0.8,
lr_component_decay=1.0,
do_benchmark=False,
# Drop parameters
dropout=0,
drop_path=0,
drop_mode='standard',
drop_schedule='constant',
cutoff_epoch=0,
# Model parameters
pretrained_encoder=None,
pretrain_weights=None,
pretrain_exclude_keys=None,
pretrain_keys_modify_to_load=None,
pretrained_distiller=None,
# Backbone parameters
encoder='vit_tiny',
vit_encoder_num_layers=12,
window_block_indexes=None,
position_embedding='sine',
out_feature_indexes=[-1],
freeze_encoder=False,
layer_norm=False,
rms_norm=False,
backbone_lora=False,
force_no_pretrain=False,
# Transformer parameters
dec_layers=3,
dim_feedforward=2048,
hidden_dim=256,
sa_nheads=8,
ca_nheads=8,
num_queries=300,
group_detr=13,
two_stage=False,
projector_scale='P4',
lite_refpoint_refine=False,
num_select=100,
dec_n_points=4,
decoder_norm='LN',
bbox_reparam=False,
freeze_batch_norm=False,
# Matcher parameters
set_cost_class=2,
set_cost_bbox=5,
set_cost_giou=2,
# Loss coefficients
cls_loss_coef=2,
bbox_loss_coef=5,
giou_loss_coef=2,
focal_alpha=0.25,
aux_loss=True,
sum_group_losses=False,
use_varifocal_loss=False,
use_position_supervised_loss=False,
ia_bce_loss=False,
# Dataset parameters
dataset_file='coco',
coco_path=None,
dataset_dir=None,
square_resize_div_64=False,
# Output parameters
output_dir='output',
dont_save_weights=False,
checkpoint_interval=10,
seed=42,
resume='',
start_epoch=0,
eval=False,
use_ema=False,
ema_decay=0.9997,
ema_tau=0,
num_workers=2,
# Distributed training parameters
device='cuda',
world_size=1,
dist_url='env://',
sync_bn=True,
# FP16
fp16_eval=False,
# Custom args
encoder_only=False,
backbone_only=False,
resolution=640,
use_cls_token=False,
multi_scale=False,
expanded_scales=False,
warmup_epochs=1,
lr_scheduler='step',
lr_min_factor=0.0,
# Early stopping parameters
early_stopping=True,
early_stopping_patience=10,
early_stopping_min_delta=0.001,
early_stopping_use_ema=False,
gradient_checkpointing=False,
# Additional
subcommand=None,
**extra_kwargs # To handle any unexpected arguments
):
args = argparse.Namespace(
num_classes=num_classes,
grad_accum_steps=grad_accum_steps,
amp=amp,
lr=lr,
lr_encoder=lr_encoder,
batch_size=batch_size,
weight_decay=weight_decay,
epochs=epochs,
lr_drop=lr_drop,
clip_max_norm=clip_max_norm,
lr_vit_layer_decay=lr_vit_layer_decay,
lr_component_decay=lr_component_decay,
do_benchmark=do_benchmark,
dropout=dropout,
drop_path=drop_path,
drop_mode=drop_mode,
drop_schedule=drop_schedule,
cutoff_epoch=cutoff_epoch,
pretrained_encoder=pretrained_encoder,
pretrain_weights=pretrain_weights,
pretrain_exclude_keys=pretrain_exclude_keys,
pretrain_keys_modify_to_load=pretrain_keys_modify_to_load,
pretrained_distiller=pretrained_distiller,
encoder=encoder,
vit_encoder_num_layers=vit_encoder_num_layers,
window_block_indexes=window_block_indexes,
position_embedding=position_embedding,
out_feature_indexes=out_feature_indexes,
freeze_encoder=freeze_encoder,
layer_norm=layer_norm,
rms_norm=rms_norm,
backbone_lora=backbone_lora,
force_no_pretrain=force_no_pretrain,
dec_layers=dec_layers,
dim_feedforward=dim_feedforward,
hidden_dim=hidden_dim,
sa_nheads=sa_nheads,
ca_nheads=ca_nheads,
num_queries=num_queries,
group_detr=group_detr,
two_stage=two_stage,
projector_scale=projector_scale,
lite_refpoint_refine=lite_refpoint_refine,
num_select=num_select,
dec_n_points=dec_n_points,
decoder_norm=decoder_norm,
bbox_reparam=bbox_reparam,
freeze_batch_norm=freeze_batch_norm,
set_cost_class=set_cost_class,
set_cost_bbox=set_cost_bbox,
set_cost_giou=set_cost_giou,
cls_loss_coef=cls_loss_coef,
bbox_loss_coef=bbox_loss_coef,
giou_loss_coef=giou_loss_coef,
focal_alpha=focal_alpha,
aux_loss=aux_loss,
sum_group_losses=sum_group_losses,
use_varifocal_loss=use_varifocal_loss,
use_position_supervised_loss=use_position_supervised_loss,
ia_bce_loss=ia_bce_loss,
dataset_file=dataset_file,
coco_path=coco_path,
dataset_dir=dataset_dir,
square_resize_div_64=square_resize_div_64,
output_dir=output_dir,
dont_save_weights=dont_save_weights,
checkpoint_interval=checkpoint_interval,
seed=seed,
resume=resume,
start_epoch=start_epoch,
eval=eval,
use_ema=use_ema,
ema_decay=ema_decay,
ema_tau=ema_tau,
num_workers=num_workers,
device=device,
world_size=world_size,
dist_url=dist_url,
sync_bn=sync_bn,
fp16_eval=fp16_eval,
encoder_only=encoder_only,
backbone_only=backbone_only,
resolution=resolution,
use_cls_token=use_cls_token,
multi_scale=multi_scale,
expanded_scales=expanded_scales,
warmup_epochs=warmup_epochs,
lr_scheduler=lr_scheduler,
lr_min_factor=lr_min_factor,
early_stopping=early_stopping,
early_stopping_patience=early_stopping_patience,
early_stopping_min_delta=early_stopping_min_delta,
early_stopping_use_ema=early_stopping_use_ema,
gradient_checkpointing=gradient_checkpointing,
**extra_kwargs
)
return args