File size: 46,834 Bytes
3f2c461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# ------------------------------------------------------------------------
# RF-DETR
# Copyright (c) 2025 Roboflow. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from LW-DETR (https://github.com/Atten4Vis/LW-DETR)
# Copyright (c) 2024 Baidu. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Conditional DETR (https://github.com/Atten4Vis/ConditionalDETR)
# Copyright (c) 2021 Microsoft. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# ------------------------------------------------------------------------

"""

cleaned main file

"""
import argparse
import ast
import copy
import datetime
import json
import math
import os
import random
import shutil
import time
from copy import deepcopy
from logging import getLogger
from pathlib import Path
from typing import DefaultDict, List, Callable

import numpy as np
import torch
from peft import LoraConfig, get_peft_model
from torch.utils.data import DataLoader, DistributedSampler

import rfdetr.util.misc as utils
from rfdetr.datasets import build_dataset, get_coco_api_from_dataset
from rfdetr.engine import evaluate, train_one_epoch
from rfdetr.models import build_model, build_criterion_and_postprocessors
from rfdetr.util.benchmark import benchmark
from rfdetr.util.drop_scheduler import drop_scheduler
from rfdetr.util.files import download_file
from rfdetr.util.get_param_dicts import get_param_dict
from rfdetr.util.utils import ModelEma, BestMetricHolder, clean_state_dict

if str(os.environ.get("USE_FILE_SYSTEM_SHARING", "False")).lower() in ["true", "1"]:
    import torch.multiprocessing
    torch.multiprocessing.set_sharing_strategy('file_system')

logger = getLogger(__name__)

HOSTED_MODELS = {
    "rf-detr-base.pth": "https://storage.googleapis.com/rfdetr/rf-detr-base-coco.pth",
    # below is a less converged model that may be better for finetuning but worse for inference
    "rf-detr-base-2.pth": "https://storage.googleapis.com/rfdetr/rf-detr-base-2.pth",
    "rf-detr-large.pth": "https://storage.googleapis.com/rfdetr/rf-detr-large.pth"
}

def download_pretrain_weights(pretrain_weights: str, redownload=False):
    if pretrain_weights in HOSTED_MODELS:
        if redownload or not os.path.exists(pretrain_weights):
            logger.info(
                f"Downloading pretrained weights for {pretrain_weights}"
            )
            download_file(
                HOSTED_MODELS[pretrain_weights],
                pretrain_weights,
            )

class Model:
    def __init__(self, **kwargs):
        args = populate_args(**kwargs)
        self.resolution = args.resolution
        self.model = build_model(args)
        self.device = torch.device(args.device)
        if args.pretrain_weights is not None:
            print("Loading pretrain weights")
            try:
                checkpoint = torch.load(args.pretrain_weights, map_location='cpu', weights_only=False)
            except Exception as e:
                print(f"Failed to load pretrain weights: {e}")
                # re-download weights if they are corrupted
                print("Failed to load pretrain weights, re-downloading")
                download_pretrain_weights(args.pretrain_weights, redownload=True)
                checkpoint = torch.load(args.pretrain_weights, map_location='cpu', weights_only=False)

            # Extract class_names from checkpoint if available
            if 'args' in checkpoint and hasattr(checkpoint['args'], 'class_names'):
                self.class_names = checkpoint['args'].class_names
                
            checkpoint_num_classes = checkpoint['model']['class_embed.bias'].shape[0]
            if checkpoint_num_classes != args.num_classes + 1:
                logger.warning(
                    f"num_classes mismatch: pretrain weights has {checkpoint_num_classes - 1} classes, but your model has {args.num_classes} classes\n"
                    f"reinitializing detection head with {checkpoint_num_classes - 1} classes"
                )
                self.reinitialize_detection_head(checkpoint_num_classes)
            # add support to exclude_keys
            # e.g., when load object365 pretrain, do not load `class_embed.[weight, bias]`
            if args.pretrain_exclude_keys is not None:
                assert isinstance(args.pretrain_exclude_keys, list)
                for exclude_key in args.pretrain_exclude_keys:
                    checkpoint['model'].pop(exclude_key)
            if args.pretrain_keys_modify_to_load is not None:
                from util.obj365_to_coco_model import get_coco_pretrain_from_obj365
                assert isinstance(args.pretrain_keys_modify_to_load, list)
                for modify_key_to_load in args.pretrain_keys_modify_to_load:
                    try:
                        checkpoint['model'][modify_key_to_load] = get_coco_pretrain_from_obj365(
                            model_without_ddp.state_dict()[modify_key_to_load],
                            checkpoint['model'][modify_key_to_load]
                        )
                    except:
                        print(f"Failed to load {modify_key_to_load}, deleting from checkpoint")
                        checkpoint['model'].pop(modify_key_to_load)

            # we may want to resume training with a smaller number of groups for group detr
            num_desired_queries = args.num_queries * args.group_detr
            query_param_names = ["refpoint_embed.weight", "query_feat.weight"]
            for name, state in checkpoint['model'].items():
                if any(name.endswith(x) for x in query_param_names):
                    checkpoint['model'][name] = state[:num_desired_queries]

            self.model.load_state_dict(checkpoint['model'], strict=False)

        if args.backbone_lora:
            print("Applying LORA to backbone")
            lora_config = LoraConfig(
                r=16,
                lora_alpha=16,
                use_dora=True,
                target_modules=[
                    "q_proj", "v_proj", "k_proj",  # covers OWL-ViT
                    "qkv", # covers open_clip ie Siglip2
                    "query", "key", "value", "cls_token", "register_tokens", # covers Dinov2 with windowed attn
                ]
            )
            self.model.backbone[0].encoder = get_peft_model(self.model.backbone[0].encoder, lora_config)
        self.model = self.model.to(self.device)
        self.criterion, self.postprocessors = build_criterion_and_postprocessors(args)
        self.stop_early = False
    
    def reinitialize_detection_head(self, num_classes):
        self.model.reinitialize_detection_head(num_classes)

    def request_early_stop(self):
        self.stop_early = True
        print("Early stopping requested, will complete current epoch and stop")

    def train(self, callbacks: DefaultDict[str, List[Callable]], **kwargs):
        currently_supported_callbacks = ["on_fit_epoch_end", "on_train_batch_start", "on_train_end"]
        for key in callbacks.keys():
            if key not in currently_supported_callbacks:
                raise ValueError(
                    f"Callback {key} is not currently supported, please file an issue if you need it!\n"
                    f"Currently supported callbacks: {currently_supported_callbacks}"
                )
        args = populate_args(**kwargs)
        utils.init_distributed_mode(args)
        print("git:\n  {}\n".format(utils.get_sha()))
        print(args)
        device = torch.device(args.device)
        
        # fix the seed for reproducibility
        seed = args.seed + utils.get_rank()
        torch.manual_seed(seed)
        np.random.seed(seed)
        random.seed(seed)

        criterion, postprocessors = build_criterion_and_postprocessors(args)
        model = self.model
        model.to(device)

        model_without_ddp = model
        if args.distributed:
            if args.sync_bn:
                model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
            model_without_ddp = model.module

        n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
        print('number of params:', n_parameters)
        param_dicts = get_param_dict(args, model_without_ddp)

        param_dicts = [p for p in param_dicts if p['params'].requires_grad]

        optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, 
                                    weight_decay=args.weight_decay)
        # Choose the learning rate scheduler based on the new argument

        dataset_train = build_dataset(image_set='train', args=args, resolution=args.resolution)
        dataset_val = build_dataset(image_set='val', args=args, resolution=args.resolution)

        # for cosine annealing, calculate total training steps and warmup steps
        total_batch_size_for_lr = args.batch_size * utils.get_world_size() * args.grad_accum_steps
        num_training_steps_per_epoch_lr = (len(dataset_train) + total_batch_size_for_lr - 1) // total_batch_size_for_lr
        total_training_steps_lr = num_training_steps_per_epoch_lr * args.epochs
        warmup_steps_lr = num_training_steps_per_epoch_lr * args.warmup_epochs
        def lr_lambda(current_step: int):
            if current_step < warmup_steps_lr:
                # Linear warmup
                return float(current_step) / float(max(1, warmup_steps_lr))
            else:
                # Cosine annealing from multiplier 1.0 down to lr_min_factor
                if args.lr_scheduler == 'cosine':
                    progress = float(current_step - warmup_steps_lr) / float(max(1, total_training_steps_lr - warmup_steps_lr))
                    return args.lr_min_factor + (1 - args.lr_min_factor) * 0.5 * (1 + math.cos(math.pi * progress))
                elif args.lr_scheduler == 'step':
                    if current_step < args.lr_drop * num_training_steps_per_epoch_lr:
                        return 1.0
                    else:
                        return 0.1
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda)

        if args.distributed:
            sampler_train = DistributedSampler(dataset_train)
            sampler_val = DistributedSampler(dataset_val, shuffle=False)
        else:
            sampler_train = torch.utils.data.RandomSampler(dataset_train)
            sampler_val = torch.utils.data.SequentialSampler(dataset_val)

        effective_batch_size = args.batch_size * args.grad_accum_steps
        min_batches = kwargs.get('min_batches', 5)
        if len(dataset_train) < effective_batch_size * min_batches:
            logger.info(
                f"Training with uniform sampler because dataset is too small: {len(dataset_train)} < {effective_batch_size * min_batches}"
            )
            sampler = torch.utils.data.RandomSampler(
                dataset_train,
                replacement=True,
                num_samples=effective_batch_size * min_batches,
            )
            data_loader_train = DataLoader(
                dataset_train,
                batch_size=effective_batch_size,
                collate_fn=utils.collate_fn,
                num_workers=args.num_workers,
                sampler=sampler,
            )
        else:
            batch_sampler_train = torch.utils.data.BatchSampler(
                sampler_train, effective_batch_size, drop_last=True)
            data_loader_train = DataLoader(
                dataset_train, 
                batch_sampler=batch_sampler_train,
                collate_fn=utils.collate_fn, 
                num_workers=args.num_workers
            )
        
        data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
                                    drop_last=False, collate_fn=utils.collate_fn, 
                                    num_workers=args.num_workers)

        base_ds = get_coco_api_from_dataset(dataset_val)

        if args.use_ema:
            self.ema_m = ModelEma(model_without_ddp, decay=args.ema_decay, tau=args.ema_tau)
        else:
            self.ema_m = None


        output_dir = Path(args.output_dir)
        
        if  utils.is_main_process():
            print("Get benchmark")
            if args.do_benchmark:
                benchmark_model = copy.deepcopy(model_without_ddp)
                bm = benchmark(benchmark_model.float(), dataset_val, output_dir)
                print(json.dumps(bm, indent=2))
                del benchmark_model
        
        if args.resume:
            checkpoint = torch.load(args.resume, map_location='cpu', weights_only=False)
            model_without_ddp.load_state_dict(checkpoint['model'], strict=True)
            if args.use_ema:
                if 'ema_model' in checkpoint:
                    self.ema_m.module.load_state_dict(clean_state_dict(checkpoint['ema_model']))
                else:
                    del self.ema_m
                    self.ema_m = ModelEma(model, decay=args.ema_decay, tau=args.ema_tau) 
            if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:                
                optimizer.load_state_dict(checkpoint['optimizer'])
                lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
                args.start_epoch = checkpoint['epoch'] + 1

        if args.eval:
            test_stats, coco_evaluator = evaluate(
                model, criterion, postprocessors, data_loader_val, base_ds, device, args)
            if args.output_dir:
                utils.save_on_master(coco_evaluator.coco_eval["bbox"].eval, output_dir / "eval.pth")
            return
        
        # for drop
        total_batch_size = effective_batch_size * utils.get_world_size()
        num_training_steps_per_epoch = (len(dataset_train) + total_batch_size - 1) // total_batch_size
        schedules = {}
        if args.dropout > 0:
            schedules['do'] = drop_scheduler(
                args.dropout, args.epochs, num_training_steps_per_epoch,
                args.cutoff_epoch, args.drop_mode, args.drop_schedule)
            print("Min DO = %.7f, Max DO = %.7f" % (min(schedules['do']), max(schedules['do'])))

        if args.drop_path > 0:
            schedules['dp'] = drop_scheduler(
                args.drop_path, args.epochs, num_training_steps_per_epoch,
                args.cutoff_epoch, args.drop_mode, args.drop_schedule)
            print("Min DP = %.7f, Max DP = %.7f" % (min(schedules['dp']), max(schedules['dp'])))

        print("Start training")
        start_time = time.time()
        best_map_holder = BestMetricHolder(use_ema=args.use_ema)
        best_map_5095 = 0
        best_map_50 = 0
        best_map_ema_5095 = 0
        best_map_ema_50 = 0
        for epoch in range(args.start_epoch, args.epochs):
            epoch_start_time = time.time()
            if args.distributed:
                sampler_train.set_epoch(epoch)

            model.train()
            criterion.train()
            train_stats = train_one_epoch(
                model, criterion, lr_scheduler, data_loader_train, optimizer, device, epoch,
                effective_batch_size, args.clip_max_norm, ema_m=self.ema_m, schedules=schedules, 
                num_training_steps_per_epoch=num_training_steps_per_epoch,
                vit_encoder_num_layers=args.vit_encoder_num_layers, args=args, callbacks=callbacks)
            train_epoch_time = time.time() - epoch_start_time
            train_epoch_time_str = str(datetime.timedelta(seconds=int(train_epoch_time)))
            if args.output_dir:
                checkpoint_paths = [output_dir / 'checkpoint.pth']
                # extra checkpoint before LR drop and every `checkpoint_interval` epochs
                if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.checkpoint_interval == 0:
                    checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
                for checkpoint_path in checkpoint_paths:
                    weights = {
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'args': args,
                    }
                    if args.use_ema:
                        weights.update({
                            'ema_model': self.ema_m.module.state_dict(),
                        })
                    if not args.dont_save_weights:
                        # create checkpoint dir
                        checkpoint_path.parent.mkdir(parents=True, exist_ok=True)
                        
                        utils.save_on_master(weights, checkpoint_path)

            with torch.inference_mode():
                test_stats, coco_evaluator = evaluate(
                    model, criterion, postprocessors, data_loader_val, base_ds, device, args=args
                )
            
            map_regular = test_stats['coco_eval_bbox'][0]
            _isbest = best_map_holder.update(map_regular, epoch, is_ema=False)
            if _isbest:
                best_map_5095 = max(best_map_5095, map_regular)
                best_map_50 = max(best_map_50, test_stats["coco_eval_bbox"][1])
                checkpoint_path = output_dir / 'checkpoint0009.pth'
                if not args.dont_save_weights:
                    utils.save_on_master({
                        'model': model_without_ddp.state_dict(),
                        'optimizer': optimizer.state_dict(),
                        'lr_scheduler': lr_scheduler.state_dict(),
                        'epoch': epoch,
                        'args': args,
                    }, checkpoint_path)
            log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
                        **{f'test_{k}': v for k, v in test_stats.items()},
                        'epoch': epoch,
                        'n_parameters': n_parameters}
            if args.use_ema:
                ema_test_stats, _ = evaluate(
                    self.ema_m.module, criterion, postprocessors, data_loader_val, base_ds, device, args=args
                )
                log_stats.update({f'ema_test_{k}': v for k,v in ema_test_stats.items()})
                map_ema = ema_test_stats['coco_eval_bbox'][0]
                best_map_ema_5095 = max(best_map_ema_5095, map_ema)
                _isbest = best_map_holder.update(map_ema, epoch, is_ema=True)
                if _isbest:
                    best_map_ema_50 = max(best_map_ema_50, ema_test_stats["coco_eval_bbox"][1])
                    checkpoint_path = output_dir / 'checkpoint_best_ema.pth'
                    if not args.dont_save_weights:
                        utils.save_on_master({
                            'model': self.ema_m.module.state_dict(),
                            'optimizer': optimizer.state_dict(),
                            'lr_scheduler': lr_scheduler.state_dict(),
                            'epoch': epoch,
                            'args': args,
                        }, checkpoint_path)
            log_stats.update(best_map_holder.summary())
            
            # epoch parameters
            ep_paras = {
                    'epoch': epoch,
                    'n_parameters': n_parameters
                }
            log_stats.update(ep_paras)
            try:
                log_stats.update({'now_time': str(datetime.datetime.now())})
            except:
                pass
            log_stats['train_epoch_time'] = train_epoch_time_str
            epoch_time = time.time() - epoch_start_time
            epoch_time_str = str(datetime.timedelta(seconds=int(epoch_time)))
            log_stats['epoch_time'] = epoch_time_str
            if args.output_dir and utils.is_main_process():
                with (output_dir / "log.txt").open("a") as f:
                    f.write(json.dumps(log_stats) + "\n")

                # for evaluation logs
                if coco_evaluator is not None:
                    (output_dir / 'eval').mkdir(exist_ok=True)
                    if "bbox" in coco_evaluator.coco_eval:
                        filenames = ['latest.pth']
                        if epoch % 50 == 0:
                            filenames.append(f'{epoch:03}.pth')
                        for name in filenames:
                            torch.save(coco_evaluator.coco_eval["bbox"].eval,
                                    output_dir / "eval" / name)
            
            for callback in callbacks["on_fit_epoch_end"]:
                callback(log_stats)

            if self.stop_early:
                print(f"Early stopping requested, stopping at epoch {epoch}")
                break

        best_is_ema = best_map_ema_5095 > best_map_5095
        
        if utils.is_main_process():
            if best_is_ema:
                shutil.copy2(output_dir / 'checkpoint_best_ema.pth', output_dir / 'checkpoint_best_total.pth')
            else:
                shutil.copy2(output_dir / 'checkpoint0009.pth', output_dir / 'checkpoint_best_total.pth')
            
            utils.strip_checkpoint(output_dir / 'checkpoint_best_total.pth')
        
            best_map_5095 = max(best_map_5095, best_map_ema_5095)
            best_map_50 = max(best_map_50, best_map_ema_50)

            results_json = {
                "map95": best_map_5095,
                "map50": best_map_50,
                "class": "all"
            }
            results = {
                "class_map": {
                    "valid": [
                        results_json
                    ]
                }
            }
            with open(output_dir / "results.json", "w") as f:
                json.dump(results, f)

            total_time = time.time() - start_time
            total_time_str = str(datetime.timedelta(seconds=int(total_time)))
            print('Training time {}'.format(total_time_str))
            print('Results saved to {}'.format(output_dir / "results.json"))
        
        if best_is_ema:
            self.model = self.ema_m.module
        self.model.eval()

        for callback in callbacks["on_train_end"]:
            callback()
    
    def export(self, output_dir="output", infer_dir=None, simplify=False,  backbone_only=False, opset_version=17, verbose=True, force=False, shape=None, batch_size=1, **kwargs):
        """Export the trained model to ONNX format"""
        print(f"Exporting model to ONNX format")
        try:
            from rfdetr.deploy.export import export_onnx, onnx_simplify, make_infer_image
        except ImportError:
            print("It seems some dependencies for ONNX export are missing. Please run `pip install rfdetr[onnxexport]` and try again.")
            raise


        device = self.device
        model = deepcopy(self.model.to("cpu"))
        model.to(device)

        os.makedirs(output_dir, exist_ok=True)
        output_dir = Path(output_dir)
        if shape is None:
            shape = (self.resolution, self.resolution)
        else:
            if shape[0] % 14 != 0 or shape[1] % 14 != 0:
                raise ValueError("Shape must be divisible by 14")

        input_tensors = make_infer_image(infer_dir, shape, batch_size, device).to(device)
        input_names = ['input']
        output_names = ['features'] if backbone_only else ['dets', 'labels']
        dynamic_axes = None
        self.model.eval()
        with torch.no_grad():
            if backbone_only:
                features = model(input_tensors)
                print(f"PyTorch inference output shape: {features.shape}")
            else:
                outputs = model(input_tensors)
                dets = outputs['pred_boxes']
                labels = outputs['pred_logits']
                print(f"PyTorch inference output shapes - Boxes: {dets.shape}, Labels: {labels.shape}")
        model.cpu()
        input_tensors = input_tensors.cpu()

        # Export to ONNX
        output_file = export_onnx(
            output_dir=output_dir,
            model=model,
            input_names=input_names,
            input_tensors=input_tensors,
            output_names=output_names,
            dynamic_axes=dynamic_axes,
            backbone_only=backbone_only,
            verbose=verbose,
            opset_version=opset_version
        )
        
        print(f"Successfully exported ONNX model to: {output_file}")

        if simplify:
            sim_output_file = onnx_simplify(
                onnx_dir=output_file,
                input_names=input_names,
                input_tensors=input_tensors,
                force=force
            )
            print(f"Successfully simplified ONNX model to: {sim_output_file}")
        
        print("ONNX export completed successfully")
        self.model = self.model.to(device)
            

if __name__ == '__main__':
    parser = argparse.ArgumentParser('LWDETR training and evaluation script', parents=[get_args_parser()])
    args = parser.parse_args()

    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)
    
    config = vars(args)  # Convert Namespace to dictionary
    
    if args.subcommand == 'distill':
        distill(**config)   
    elif args.subcommand is None:
        main(**config)
    elif args.subcommand == 'export_model':
        filter_keys = [
            "num_classes",
            "grad_accum_steps",
            "lr",
            "lr_encoder",
            "weight_decay",
            "epochs",
            "lr_drop",
            "clip_max_norm",
            "lr_vit_layer_decay",
            "lr_component_decay",
            "dropout",
            "drop_path",
            "drop_mode",
            "drop_schedule",
            "cutoff_epoch",
            "pretrained_encoder",
            "pretrain_weights",
            "pretrain_exclude_keys",
            "pretrain_keys_modify_to_load",
            "freeze_florence",
            "freeze_aimv2",
            "decoder_norm",
            "set_cost_class",
            "set_cost_bbox",
            "set_cost_giou",
            "cls_loss_coef",
            "bbox_loss_coef",
            "giou_loss_coef",
            "focal_alpha",
            "aux_loss",
            "sum_group_losses",
            "use_varifocal_loss",
            "use_position_supervised_loss",
            "ia_bce_loss",
            "dataset_file",
            "coco_path",
            "dataset_dir",
            "square_resize_div_64",
            "output_dir",
            "checkpoint_interval",
            "seed",
            "resume",
            "start_epoch",
            "eval",
            "use_ema",
            "ema_decay",
            "ema_tau",
            "num_workers",
            "device",
            "world_size",
            "dist_url",
            "sync_bn",
            "fp16_eval",
            "infer_dir",
            "verbose",
            "opset_version",
            "dry_run",
            "shape",
        ]
        for key in filter_keys:
            config.pop(key, None)  # Use pop with None to avoid KeyError
            
        from deploy.export import main as export_main
        if args.batch_size != 1:
            config['batch_size'] = 1
            print(f"Only batch_size 1 is supported for onnx export, \

                 but got batchsize = {args.batch_size}. batch_size is forcibly set to 1.")
        export_main(**config)

def get_args_parser():
    parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
    parser.add_argument('--num_classes', default=2, type=int)
    parser.add_argument('--grad_accum_steps', default=1, type=int)
    parser.add_argument('--amp', default=False, type=bool)
    parser.add_argument('--lr', default=1e-4, type=float)
    parser.add_argument('--lr_encoder', default=1.5e-4, type=float)
    parser.add_argument('--batch_size', default=2, type=int)
    parser.add_argument('--weight_decay', default=1e-4, type=float)
    parser.add_argument('--epochs', default=12, type=int)
    parser.add_argument('--lr_drop', default=11, type=int)
    parser.add_argument('--clip_max_norm', default=0.1, type=float,
                        help='gradient clipping max norm')
    parser.add_argument('--lr_vit_layer_decay', default=0.8, type=float)
    parser.add_argument('--lr_component_decay', default=1.0, type=float)
    parser.add_argument('--do_benchmark', action='store_true', help='benchmark the model')

    # drop args 
    # dropout and stochastic depth drop rate; set at most one to non-zero
    parser.add_argument('--dropout', type=float, default=0,
                        help='Drop path rate (default: 0.0)')
    parser.add_argument('--drop_path', type=float, default=0,
                        help='Drop path rate (default: 0.0)')

    # early / late dropout and stochastic depth settings
    parser.add_argument('--drop_mode', type=str, default='standard',
                        choices=['standard', 'early', 'late'], help='drop mode')
    parser.add_argument('--drop_schedule', type=str, default='constant',
                        choices=['constant', 'linear'],
                        help='drop schedule for early dropout / s.d. only')
    parser.add_argument('--cutoff_epoch', type=int, default=0,
                        help='if drop_mode is early / late, this is the epoch where dropout ends / starts')

    # Model parameters
    parser.add_argument('--pretrained_encoder', type=str, default=None, 
                        help="Path to the pretrained encoder.")
    parser.add_argument('--pretrain_weights', type=str, default=None, 
                        help="Path to the pretrained model.")
    parser.add_argument('--pretrain_exclude_keys', type=str, default=None, nargs='+', 
                        help="Keys you do not want to load.")
    parser.add_argument('--pretrain_keys_modify_to_load', type=str, default=None, nargs='+',
                        help="Keys you want to modify to load. Only used when loading objects365 pre-trained weights.")

    # * Backbone
    parser.add_argument('--encoder', default='vit_tiny', type=str,
                        help="Name of the transformer or convolutional encoder to use")
    parser.add_argument('--vit_encoder_num_layers', default=12, type=int,
                        help="Number of layers used in ViT encoder")
    parser.add_argument('--window_block_indexes', default=None, type=int, nargs='+')
    parser.add_argument('--position_embedding', default='sine', type=str, 
                        choices=('sine', 'learned'),
                        help="Type of positional embedding to use on top of the image features")
    parser.add_argument('--out_feature_indexes', default=[-1], type=int, nargs='+', help='only for vit now')
    parser.add_argument("--freeze_encoder", action="store_true", dest="freeze_encoder")
    parser.add_argument("--layer_norm", action="store_true", dest="layer_norm")
    parser.add_argument("--rms_norm", action="store_true", dest="rms_norm")
    parser.add_argument("--backbone_lora", action="store_true", dest="backbone_lora")
    parser.add_argument("--force_no_pretrain", action="store_true", dest="force_no_pretrain")

    # * Transformer
    parser.add_argument('--dec_layers', default=3, type=int,
                        help="Number of decoding layers in the transformer")
    parser.add_argument('--dim_feedforward', default=2048, type=int,
                        help="Intermediate size of the feedforward layers in the transformer blocks")
    parser.add_argument('--hidden_dim', default=256, type=int,
                        help="Size of the embeddings (dimension of the transformer)")
    parser.add_argument('--sa_nheads', default=8, type=int,
                        help="Number of attention heads inside the transformer's self-attentions")
    parser.add_argument('--ca_nheads', default=8, type=int,
                        help="Number of attention heads inside the transformer's cross-attentions")
    parser.add_argument('--num_queries', default=300, type=int,
                        help="Number of query slots")
    parser.add_argument('--group_detr', default=13, type=int,
                        help="Number of groups to speed up detr training")
    parser.add_argument('--two_stage', action='store_true')
    parser.add_argument('--projector_scale', default='P4', type=str, nargs='+', choices=('P3', 'P4', 'P5', 'P6'))
    parser.add_argument('--lite_refpoint_refine', action='store_true', help='lite refpoint refine mode for speed-up')
    parser.add_argument('--num_select', default=100, type=int,
                        help='the number of predictions selected for evaluation')
    parser.add_argument('--dec_n_points', default=4, type=int,
                        help='the number of sampling points')
    parser.add_argument('--decoder_norm', default='LN', type=str)
    parser.add_argument('--bbox_reparam', action='store_true')
    parser.add_argument('--freeze_batch_norm', action='store_true')
    # * Matcher
    parser.add_argument('--set_cost_class', default=2, type=float,
                        help="Class coefficient in the matching cost")
    parser.add_argument('--set_cost_bbox', default=5, type=float,
                        help="L1 box coefficient in the matching cost")
    parser.add_argument('--set_cost_giou', default=2, type=float,
                        help="giou box coefficient in the matching cost")

    # * Loss coefficients
    parser.add_argument('--cls_loss_coef', default=2, type=float)
    parser.add_argument('--bbox_loss_coef', default=5, type=float)
    parser.add_argument('--giou_loss_coef', default=2, type=float)
    parser.add_argument('--focal_alpha', default=0.25, type=float)
    
    # Loss
    parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
                        help="Disables auxiliary decoding losses (loss at each layer)")
    parser.add_argument('--sum_group_losses', action='store_true',
                        help="To sum losses across groups or mean losses.")
    parser.add_argument('--use_varifocal_loss', action='store_true')
    parser.add_argument('--use_position_supervised_loss', action='store_true')
    parser.add_argument('--ia_bce_loss', action='store_true')

    # dataset parameters
    parser.add_argument('--dataset_file', default='coco')
    parser.add_argument('--coco_path', type=str)
    parser.add_argument('--dataset_dir', type=str)
    parser.add_argument('--square_resize_div_64', action='store_true')

    parser.add_argument('--output_dir', default='output',
                        help='path where to save, empty for no saving')
    parser.add_argument('--dont_save_weights', action='store_true')
    parser.add_argument('--checkpoint_interval', default=10, type=int,
                        help='epoch interval to save checkpoint')
    parser.add_argument('--seed', default=42, type=int)
    parser.add_argument('--resume', default='', help='resume from checkpoint')
    parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
                        help='start epoch')
    parser.add_argument('--eval', action='store_true')
    parser.add_argument('--use_ema', action='store_true')
    parser.add_argument('--ema_decay', default=0.9997, type=float)
    parser.add_argument('--ema_tau', default=0, type=float)

    parser.add_argument('--num_workers', default=2, type=int)

    # distributed training parameters
    parser.add_argument('--device', default='cuda',
                        help='device to use for training / testing')
    parser.add_argument('--world_size', default=1, type=int,
                        help='number of distributed processes')
    parser.add_argument('--dist_url', default='env://', 
                        help='url used to set up distributed training')
    parser.add_argument('--sync_bn', default=True, type=bool,
                        help='setup synchronized BatchNorm for distributed training')
    
    # fp16
    parser.add_argument('--fp16_eval', default=False, action='store_true',
                        help='evaluate in fp16 precision.')

    # custom args
    parser.add_argument('--encoder_only', action='store_true', help='Export and benchmark encoder only')
    parser.add_argument('--backbone_only', action='store_true', help='Export and benchmark backbone only')
    parser.add_argument('--resolution', type=int, default=640, help="input resolution")
    parser.add_argument('--use_cls_token', action='store_true', help='use cls token')
    parser.add_argument('--multi_scale', action='store_true', help='use multi scale')
    parser.add_argument('--expanded_scales', action='store_true', help='use expanded scales')
    parser.add_argument('--warmup_epochs', default=1, type=float, 
        help='Number of warmup epochs for linear warmup before cosine annealing')
    # Add scheduler type argument: 'step' or 'cosine'
    parser.add_argument(
        '--lr_scheduler',
        default='step',
        choices=['step', 'cosine'],
        help="Type of learning rate scheduler to use: 'step' (default) or 'cosine'"
    )
    parser.add_argument('--lr_min_factor', default=0.0, type=float, 
        help='Minimum learning rate factor (as a fraction of initial lr) at the end of cosine annealing')
    # Early stopping parameters
    parser.add_argument('--early_stopping', action='store_true',
                        help='Enable early stopping based on mAP improvement')
    parser.add_argument('--early_stopping_patience', default=10, type=int,
                        help='Number of epochs with no improvement after which training will be stopped')
    parser.add_argument('--early_stopping_min_delta', default=0.001, type=float,
                        help='Minimum change in mAP to qualify as an improvement')
    parser.add_argument('--early_stopping_use_ema', action='store_true',
                        help='Use EMA model metrics for early stopping')
    # subparsers
    subparsers = parser.add_subparsers(title='sub-commands', dest='subcommand',
        description='valid subcommands', help='additional help')

    # subparser for export model
    parser_export = subparsers.add_parser('export_model', help='LWDETR model export')
    parser_export.add_argument('--infer_dir', type=str, default=None)
    parser_export.add_argument('--verbose', type=ast.literal_eval, default=False, nargs="?", const=True)
    parser_export.add_argument('--opset_version', type=int, default=17)
    parser_export.add_argument('--simplify', action='store_true', help="Simplify onnx model")
    parser_export.add_argument('--tensorrt', '--trtexec', '--trt', action='store_true',
                               help="build tensorrt engine")
    parser_export.add_argument('--dry-run', '--test', '-t', action='store_true', help="just print command")
    parser_export.add_argument('--profile', action='store_true', help='Run nsys profiling during TensorRT export')
    parser_export.add_argument('--shape', type=int, nargs=2, default=(640, 640), help="input shape (width, height)")
    return parser

def populate_args(

    # Basic training parameters

    num_classes=2,

    grad_accum_steps=1,

    amp=False,

    lr=1e-4,

    lr_encoder=1.5e-4,

    batch_size=2,

    weight_decay=1e-4,

    epochs=12,

    lr_drop=11,

    clip_max_norm=0.1,

    lr_vit_layer_decay=0.8,

    lr_component_decay=1.0,

    do_benchmark=False,

    

    # Drop parameters

    dropout=0,

    drop_path=0,

    drop_mode='standard',

    drop_schedule='constant',

    cutoff_epoch=0,

    

    # Model parameters

    pretrained_encoder=None,

    pretrain_weights=None, 

    pretrain_exclude_keys=None,

    pretrain_keys_modify_to_load=None,

    pretrained_distiller=None,

    

    # Backbone parameters

    encoder='vit_tiny',

    vit_encoder_num_layers=12,

    window_block_indexes=None,

    position_embedding='sine',

    out_feature_indexes=[-1],

    freeze_encoder=False,

    layer_norm=False,

    rms_norm=False,

    backbone_lora=False,

    force_no_pretrain=False,

    

    # Transformer parameters

    dec_layers=3,

    dim_feedforward=2048,

    hidden_dim=256,

    sa_nheads=8,

    ca_nheads=8,

    num_queries=300,

    group_detr=13,

    two_stage=False,

    projector_scale='P4',

    lite_refpoint_refine=False,

    num_select=100,

    dec_n_points=4,

    decoder_norm='LN',

    bbox_reparam=False,

    freeze_batch_norm=False,

    

    # Matcher parameters

    set_cost_class=2,

    set_cost_bbox=5,

    set_cost_giou=2,

    

    # Loss coefficients

    cls_loss_coef=2,

    bbox_loss_coef=5,

    giou_loss_coef=2,

    focal_alpha=0.25,

    aux_loss=True,

    sum_group_losses=False,

    use_varifocal_loss=False,

    use_position_supervised_loss=False,

    ia_bce_loss=False,

    

    # Dataset parameters

    dataset_file='coco',

    coco_path=None,

    dataset_dir=None,

    square_resize_div_64=False,

    

    # Output parameters

    output_dir='output',

    dont_save_weights=False,

    checkpoint_interval=10,

    seed=42,

    resume='',

    start_epoch=0,

    eval=False,

    use_ema=False,

    ema_decay=0.9997,

    ema_tau=0,

    num_workers=2,

    

    # Distributed training parameters

    device='cuda',

    world_size=1,

    dist_url='env://',

    sync_bn=True,

    

    # FP16

    fp16_eval=False,

    

    # Custom args

    encoder_only=False,

    backbone_only=False,

    resolution=640,

    use_cls_token=False,

    multi_scale=False,

    expanded_scales=False,

    warmup_epochs=1,

    lr_scheduler='step',

    lr_min_factor=0.0,

    # Early stopping parameters

    early_stopping=True,

    early_stopping_patience=10,

    early_stopping_min_delta=0.001,

    early_stopping_use_ema=False,

    gradient_checkpointing=False,

    # Additional

    subcommand=None,

    **extra_kwargs  # To handle any unexpected arguments

):
    args = argparse.Namespace(
        num_classes=num_classes,
        grad_accum_steps=grad_accum_steps,
        amp=amp,
        lr=lr,
        lr_encoder=lr_encoder,
        batch_size=batch_size,
        weight_decay=weight_decay,
        epochs=epochs,
        lr_drop=lr_drop,
        clip_max_norm=clip_max_norm,
        lr_vit_layer_decay=lr_vit_layer_decay,
        lr_component_decay=lr_component_decay,
        do_benchmark=do_benchmark,
        dropout=dropout,
        drop_path=drop_path,
        drop_mode=drop_mode,
        drop_schedule=drop_schedule,
        cutoff_epoch=cutoff_epoch,
        pretrained_encoder=pretrained_encoder,
        pretrain_weights=pretrain_weights,
        pretrain_exclude_keys=pretrain_exclude_keys,
        pretrain_keys_modify_to_load=pretrain_keys_modify_to_load,
        pretrained_distiller=pretrained_distiller,
        encoder=encoder,
        vit_encoder_num_layers=vit_encoder_num_layers,
        window_block_indexes=window_block_indexes,
        position_embedding=position_embedding,
        out_feature_indexes=out_feature_indexes,
        freeze_encoder=freeze_encoder,
        layer_norm=layer_norm,
        rms_norm=rms_norm,
        backbone_lora=backbone_lora,
        force_no_pretrain=force_no_pretrain,
        dec_layers=dec_layers,
        dim_feedforward=dim_feedforward,
        hidden_dim=hidden_dim,
        sa_nheads=sa_nheads,
        ca_nheads=ca_nheads,
        num_queries=num_queries,
        group_detr=group_detr,
        two_stage=two_stage,
        projector_scale=projector_scale,
        lite_refpoint_refine=lite_refpoint_refine,
        num_select=num_select,
        dec_n_points=dec_n_points,
        decoder_norm=decoder_norm,
        bbox_reparam=bbox_reparam,
        freeze_batch_norm=freeze_batch_norm,
        set_cost_class=set_cost_class,
        set_cost_bbox=set_cost_bbox,
        set_cost_giou=set_cost_giou,
        cls_loss_coef=cls_loss_coef,
        bbox_loss_coef=bbox_loss_coef,
        giou_loss_coef=giou_loss_coef,
        focal_alpha=focal_alpha,
        aux_loss=aux_loss,
        sum_group_losses=sum_group_losses,
        use_varifocal_loss=use_varifocal_loss,
        use_position_supervised_loss=use_position_supervised_loss,
        ia_bce_loss=ia_bce_loss,
        dataset_file=dataset_file,
        coco_path=coco_path,
        dataset_dir=dataset_dir,
        square_resize_div_64=square_resize_div_64,
        output_dir=output_dir,
        dont_save_weights=dont_save_weights,
        checkpoint_interval=checkpoint_interval,
        seed=seed,
        resume=resume,
        start_epoch=start_epoch,
        eval=eval,
        use_ema=use_ema,
        ema_decay=ema_decay,
        ema_tau=ema_tau,
        num_workers=num_workers,
        device=device,
        world_size=world_size,
        dist_url=dist_url,
        sync_bn=sync_bn,
        fp16_eval=fp16_eval,
        encoder_only=encoder_only,
        backbone_only=backbone_only,
        resolution=resolution,
        use_cls_token=use_cls_token,
        multi_scale=multi_scale,
        expanded_scales=expanded_scales,
        warmup_epochs=warmup_epochs,
        lr_scheduler=lr_scheduler,
        lr_min_factor=lr_min_factor,
        early_stopping=early_stopping,
        early_stopping_patience=early_stopping_patience,
        early_stopping_min_delta=early_stopping_min_delta,
        early_stopping_use_ema=early_stopping_use_ema,
        gradient_checkpointing=gradient_checkpointing,
        **extra_kwargs
    )
    return args