Spaces:
Paused
Paused
| # // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
| # // | |
| # // Licensed under the Apache License, Version 2.0 (the "License"); | |
| # // you may not use this file except in compliance with the License. | |
| # // You may obtain a copy of the License at | |
| # // | |
| # // http://www.apache.org/licenses/LICENSE-2.0 | |
| # // | |
| # // Unless required by applicable law or agreed to in writing, software | |
| # // distributed under the License is distributed on an "AS IS" BASIS, | |
| # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # // See the License for the specific language governing permissions and | |
| # // limitations under the License. | |
| import spaces | |
| import subprocess | |
| import os | |
| import sys | |
| # --- Setup: Clone repository, Change Directory, and Update Python Path --- | |
| # Esta é a abordagem definitiva para corrigir todos os problemas de caminho. | |
| # 1. Clone o repositório | |
| repo_dir_name = "SeedVR2-3B" | |
| if not os.path.exists(repo_dir_name): | |
| print(f"Clonando o repositório {repo_dir_name}...") | |
| subprocess.run(f"git clone https://huggingface.co/spaces/ByteDance-Seed/{repo_dir_name}", shell=True, check=True) | |
| # 2. Mude o diretório de trabalho atual para a raiz do repositório. | |
| # Isso corrige o acesso a arquivos relativos (ex: carregar config.yaml). | |
| os.chdir(repo_dir_name) | |
| print(f"Diretório de trabalho alterado para: {os.getcwd()}") | |
| # 3. Adicione explicitamente o novo diretório de trabalho ao caminho do sistema do Python. | |
| # Isso corrige as importações de módulos (ex: `from data...`). | |
| sys.path.insert(0, os.path.abspath('.')) | |
| print(f"Diretório atual adicionado ao sys.path: {os.path.abspath('.')}") | |
| # --- Código Principal da Aplicação --- | |
| # Agora, todas as importações e cargas de arquivos devem funcionar corretamente. | |
| import torch | |
| import mediapy | |
| from einops import rearrange | |
| from omegaconf import OmegaConf | |
| import datetime | |
| from tqdm import tqdm | |
| import gc | |
| from PIL import Image | |
| import gradio as gr | |
| from pathlib import Path | |
| import shlex | |
| import uuid | |
| import mimetypes | |
| import torchvision.transforms as T | |
| from torchvision.transforms import Compose, Lambda, Normalize | |
| from torchvision.io.video import read_video | |
| # Importações do repositório (agora funcionarão) | |
| from data.image.transforms.divisible_crop import DivisibleCrop | |
| from data.image.transforms.na_resize import NaResize | |
| from data.video.transforms.rearrange import Rearrange | |
| from common.config import load_config | |
| from common.distributed import init_torch | |
| from common.distributed.advanced import init_sequence_parallel | |
| from common.seed import set_seed | |
| from common.partition import partition_by_size | |
| from projects.video_diffusion_sr.infer import VideoDiffusionInfer | |
| from common.distributed.ops import sync_data | |
| # Verifica o utilitário color_fix (usando caminho relativo) | |
| if os.path.exists("projects/video_diffusion_sr/color_fix.py"): | |
| from projects.video_diffusion_sr.color_fix import wavelet_reconstruction | |
| use_colorfix = True | |
| else: | |
| use_colorfix = False | |
| print('Atenção!!!!!! A correção de cor não está disponível!') | |
| # --- Configuração de Ambiente e Dependências --- | |
| os.environ["MASTER_ADDR"] = "127.0.0.1" | |
| os.environ["MASTER_PORT"] = "12355" | |
| os.environ["RANK"] = str(0) | |
| os.environ["WORLD_SIZE"] = str(1) | |
| # Use sys.executable para garantir que estamos usando o pip correto | |
| python_executable = sys.executable | |
| subprocess.run( | |
| [python_executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"], | |
| env={**os.environ, "FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
| check=True | |
| ) | |
| apex_wheel_path = "apex-0.1-cp310-cp310-linux_x86_64.whl" | |
| if os.path.exists(apex_wheel_path): | |
| subprocess.run([python_executable, "-m", "pip", "install", apex_wheel_path], check=True) | |
| print("✅ Configuração do Apex concluída.") | |
| # --- Funções Principais --- | |
| def configure_sequence_parallel(sp_size): | |
| if sp_size > 1: | |
| init_sequence_parallel(sp_size) | |
| def configure_runner(sp_size): | |
| # Os caminhos agora são simples e relativos à raiz do repositório | |
| config_path = 'configs_3b/main.yaml' | |
| checkpoint_path = 'ckpts/seedvr2_ema_3b.pth' | |
| config = load_config(config_path) # Isto agora funcionará corretamente | |
| runner = VideoDiffusionInfer(config) | |
| OmegaConf.set_readonly(runner.config, False) | |
| init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600)) | |
| configure_sequence_parallel(sp_size) | |
| runner.configure_dit_model(device="cuda", checkpoint=checkpoint_path) | |
| runner.configure_vae_model() | |
| if hasattr(runner.vae, "set_memory_limit"): | |
| runner.vae.set_memory_limit(**runner.config.vae.memory_limit) | |
| return runner | |
| def generation_step(runner, text_embeds_dict, cond_latents): | |
| def _move_to_cuda(x): | |
| return [i.to(torch.device("cuda")) for i in x] | |
| noises = [torch.randn_like(latent) for latent in cond_latents] | |
| aug_noises = [torch.randn_like(latent) for latent in cond_latents] | |
| print(f"Gerando com o formato de ruído: {noises[0].size()}.") | |
| noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0) | |
| noises, aug_noises, cond_latents = list(map(_move_to_cuda, (noises, aug_noises, cond_latents))) | |
| cond_noise_scale = 0.1 | |
| def _add_noise(x, aug_noise): | |
| t = torch.tensor([1000.0], device=torch.device("cuda")) * cond_noise_scale | |
| shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None] | |
| t = runner.timestep_transform(t, shape) | |
| print(f"Deslocamento de Timestep de {1000.0 * cond_noise_scale} para {t}.") | |
| x = runner.schedule.forward(x, aug_noise, t) | |
| return x | |
| conditions = [ | |
| runner.get_condition(noise, task="sr", latent_blur=_add_noise(latent_blur, aug_noise)) | |
| for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents) | |
| ] | |
| with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True): | |
| video_tensors = runner.inference( | |
| noises=noises, conditions=conditions, dit_offload=False, **text_embeds_dict | |
| ) | |
| samples = [rearrange(video, "c t h w -> t c h w") for video in video_tensors] | |
| del video_tensors | |
| return samples | |
| def generation_loop(video_path, seed=666, fps_out=24, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=1280, res_w=720, sp_size=1): | |
| if video_path is None: | |
| return None, None, None | |
| runner = configure_runner(1) | |
| def _extract_text_embeds(): | |
| positive_prompts_embeds = [] | |
| for _ in original_videos_local: | |
| # Os caminhos agora são simples | |
| text_pos_embeds = torch.load('pos_emb.pt') | |
| text_neg_embeds = torch.load('neg_emb.pt') | |
| positive_prompts_embeds.append({"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}) | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| return positive_prompts_embeds | |
| def cut_videos(videos, sp_size): | |
| if videos.size(1) > 121: | |
| videos = videos[:, :121] | |
| t = videos.size(1) | |
| if t <= 4 * sp_size: | |
| padding_needed = 4 * sp_size - t + 1 | |
| if padding_needed > 0: | |
| padding = torch.cat([videos[:, -1].unsqueeze(1)] * padding_needed, dim=1) | |
| videos = torch.cat([videos, padding], dim=1) | |
| return videos | |
| if (t - 1) % (4 * sp_size) == 0: | |
| return videos | |
| else: | |
| padding_needed = 4 * sp_size - ((t - 1) % (4 * sp_size)) | |
| padding = torch.cat([videos[:, -1].unsqueeze(1)] * padding_needed, dim=1) | |
| videos = torch.cat([videos, padding], dim=1) | |
| assert (videos.size(1) - 1) % (4 * sp_size) == 0 | |
| return videos | |
| runner.config.diffusion.cfg.scale = cfg_scale | |
| runner.config.diffusion.cfg.rescale = cfg_rescale | |
| runner.config.diffusion.timesteps.sampling.steps = sample_steps | |
| runner.configure_diffusion() | |
| seed = int(seed) % (2**32) | |
| set_seed(seed, same_across_ranks=True) | |
| output_base_dir = "output" | |
| os.makedirs(output_base_dir, exist_ok=True) | |
| original_videos = [os.path.basename(video_path)] | |
| original_videos_local = partition_by_size(original_videos, batch_size) | |
| positive_prompts_embeds = _extract_text_embeds() | |
| video_transform = Compose([ | |
| NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False), | |
| Lambda(lambda x: torch.clamp(x, 0.0, 1.0)), | |
| DivisibleCrop((16, 16)), | |
| Normalize(0.5, 0.5), | |
| Rearrange("t c h w -> c t h w"), | |
| ]) | |
| for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)): | |
| cond_latents = [] | |
| for _ in videos: | |
| media_type, _ = mimetypes.guess_type(video_path) | |
| is_image = media_type and media_type.startswith("image") | |
| is_video = media_type and media_type.startswith("video") | |
| if is_video: | |
| video, _, _ = read_video(video_path, output_format="TCHW") | |
| video = video / 255.0 | |
| if video.size(0) > 121: | |
| video = video[:121] | |
| print(f"Tamanho do vídeo lido: {video.size()}") | |
| output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.mp4") | |
| elif is_image: | |
| img = Image.open(video_path).convert("RGB") | |
| img_tensor = T.ToTensor()(img).unsqueeze(0) | |
| video = img_tensor | |
| print(f"Tamanho da imagem lida: {video.size()}") | |
| output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.png") | |
| else: | |
| raise ValueError("Tipo de arquivo não suportado") | |
| cond_latents.append(video_transform(video.to(torch.device("cuda")))) | |
| ori_lengths = [v.size(1) for v in cond_latents] | |
| input_videos = cond_latents | |
| if is_video: | |
| cond_latents = [cut_videos(v, sp_size) for v in cond_latents] | |
| print(f"Codificando vídeos: {[v.size() for v in cond_latents]}") | |
| cond_latents = runner.vae_encode(cond_latents) | |
| for i, emb in enumerate(text_embeds["texts_pos"]): | |
| text_embeds["texts_pos"][i] = emb.to(torch.device("cuda")) | |
| for i, emb in enumerate(text_embeds["texts_neg"]): | |
| text_embeds["texts_neg"][i] = emb.to(torch.device("cuda")) | |
| samples = generation_step(runner, text_embeds, cond_latents=cond_latents) | |
| del cond_latents | |
| for _, input_tensor, sample, ori_length in zip(videos, input_videos, samples, ori_lengths): | |
| if ori_length < sample.shape[0]: | |
| sample = sample[:ori_length] | |
| input_tensor = rearrange(input_tensor, "c t h w -> t c h w") | |
| if use_colorfix: | |
| sample = wavelet_reconstruction(sample.to("cpu"), input_tensor[:sample.size(0)].to("cpu")) | |
| else: | |
| sample = sample.to("cpu") | |
| sample = rearrange(sample, "t c h w -> t h w c") | |
| sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round() | |
| sample = sample.to(torch.uint8).numpy() | |
| if is_image: | |
| mediapy.write_image(output_dir, sample[0]) | |
| else: | |
| mediapy.write_video(output_dir, sample, fps=fps_out) | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| if is_image: | |
| return output_dir, None, output_dir | |
| else: | |
| return None, output_dir, output_dir | |
| # --- UI do Gradio --- | |
| with gr.Blocks(title="SeedVR2: Restauração de Vídeo em Um Passo") as demo: | |
| # Use um caminho absoluto para o arquivo de logo do Gradio para segurança | |
| logo_path = os.path.abspath("assets/seedvr_logo.png") | |
| gr.HTML(f""" | |
| <div style='text-align:center; margin-bottom: 10px;'> | |
| <img src='file/{logo_path}' style='height:40px;' alt='SeedVR logo'/> | |
| </div> | |
| <p><b>Demonstração oficial do Gradio</b> para <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'><b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br> | |
| 🔥 <b>SeedVR2</b> é um algoritmo de restauração de imagem e vídeo em um passo para conteúdo do mundo real e AIGC.</p> | |
| """) | |
| with gr.Row(): | |
| input_file = gr.File(label="Carregar imagem ou vídeo", type="filepath") | |
| with gr.Column(): | |
| seed = gr.Number(label="Seed", value=666) | |
| fps = gr.Number(label="FPS de Saída (para vídeo)", value=24) | |
| run_button = gr.Button("Executar") | |
| with gr.Row(): | |
| output_image = gr.Image(label="Imagem de Saída") | |
| output_video = gr.Video(label="Vídeo de Saída") | |
| download_link = gr.File(label="Baixar o resultado") | |
| run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link]) | |
| gr.HTML(""" | |
| <hr> | |
| <p>Se você achou o SeedVR útil, por favor ⭐ o <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>repositório no GitHub</a>: | |
| <a href="https://github.com/ByteDance-Seed/SeedVR" target="_blank"><img src="https://img.shields.io/github/stars/ByteDance-Seed/SeedVR?style=social" alt="GitHub Stars"></a></p> | |
| <h4>Aviso</h4> | |
| <p>Esta demonstração suporta até <b>720p e 121 frames para vídeos ou imagens 2k</b>. Para outros casos de uso, verifique o <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>repositório no GitHub</a>.</p> | |
| <h4>Limitações</h4> | |
| <p>Pode falhar em degradações pesadas ou em clipes AIGC com pouco movimento, causando excesso de nitidez ou restauração inadequada.</p> | |
| """) | |
| demo.queue().launch(share=True) |