File size: 13,685 Bytes
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
09b1b8e
7489402
09b1b8e
f85ca57
6cbcc74
ea7dfbd
 
f85ca57
ea7dfbd
1d6758a
 
ea7dfbd
1d6758a
4ae44b4
ea7dfbd
 
1d6758a
ea7dfbd
f85ca57
ea7dfbd
 
 
 
 
 
 
 
4ae44b4
42f2c22
 
 
 
 
 
 
657048f
42f2c22
6237836
367bee6
67c0e7b
657048f
d0b8777
f85ca57
 
367bee6
ea7dfbd
f85ca57
 
 
 
 
 
 
 
 
 
 
ea7dfbd
1d6758a
f85ca57
 
 
 
ea7dfbd
f85ca57
ea7dfbd
e276ced
 
 
 
e3b4db8
ea7dfbd
5fad6fa
de5b2a1
5fad6fa
 
 
de5b2a1
 
1d6758a
f85ca57
5fad6fa
ea7dfbd
42f2c22
ea7dfbd
42f2c22
1fd3071
 
 
42f2c22
 
ea7dfbd
1d6758a
 
f85ca57
ea7dfbd
42f2c22
 
 
1fd3071
 
f85ca57
42f2c22
f85ca57
42f2c22
 
 
 
 
 
512f3c8
42f2c22
 
 
ea7dfbd
42f2c22
f85ca57
42f2c22
 
 
f85ca57
512f3c8
42f2c22
ea7dfbd
42f2c22
 
 
 
f85ca57
42f2c22
 
 
 
 
f85ca57
42f2c22
 
f85ca57
42f2c22
 
 
f85ca57
 
 
 
 
42f2c22
 
 
 
f85ca57
ea7dfbd
1d6758a
 
f85ca57
42f2c22
 
 
 
 
09fd3d7
 
42f2c22
 
f85ca57
 
 
 
42f2c22
 
 
 
f85ca57
 
42f2c22
 
 
 
 
 
 
 
 
f85ca57
42f2c22
f85ca57
 
42f2c22
09b1b8e
f85ca57
42f2c22
 
f85ca57
 
 
 
 
 
 
42f2c22
 
 
f85ca57
657048f
 
 
f85ca57
657048f
f85ca57
 
47bef9f
 
ea7dfbd
f85ca57
 
6571c22
5fad6fa
 
ea7dfbd
5fad6fa
 
ea7dfbd
5fad6fa
 
 
 
 
 
 
 
ea7dfbd
5fad6fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea7dfbd
5fad6fa
ea7dfbd
 
1d6758a
5fad6fa
ea7dfbd
 
 
 
 
5fad6fa
 
 
ea7dfbd
5fad6fa
 
ea7dfbd
5fad6fa
ea7dfbd
5fad6fa
 
ea7dfbd
 
5fad6fa
ea7dfbd
5fad6fa
 
 
 
 
ea7dfbd
5fad6fa
ea7dfbd
 
 
 
5fad6fa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# //     http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import spaces
import subprocess
import os
import sys

# --- Setup: Clone repository, Change Directory, and Update Python Path ---
# Esta é a abordagem definitiva para corrigir todos os problemas de caminho.

# 1. Clone o repositório
repo_dir_name = "SeedVR2-3B"
if not os.path.exists(repo_dir_name):
    print(f"Clonando o repositório {repo_dir_name}...")
    subprocess.run(f"git clone https://huggingface.co/spaces/ByteDance-Seed/{repo_dir_name}", shell=True, check=True)

# 2. Mude o diretório de trabalho atual para a raiz do repositório.
# Isso corrige o acesso a arquivos relativos (ex: carregar config.yaml).
os.chdir(repo_dir_name)
print(f"Diretório de trabalho alterado para: {os.getcwd()}")

# 3. Adicione explicitamente o novo diretório de trabalho ao caminho do sistema do Python.
# Isso corrige as importações de módulos (ex: `from data...`).
sys.path.insert(0, os.path.abspath('.'))
print(f"Diretório atual adicionado ao sys.path: {os.path.abspath('.')}")


# --- Código Principal da Aplicação ---
# Agora, todas as importações e cargas de arquivos devem funcionar corretamente.

import torch
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
import datetime
from tqdm import tqdm
import gc
from PIL import Image
import gradio as gr
from pathlib import Path
import shlex
import uuid
import mimetypes
import torchvision.transforms as T
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video

# Importações do repositório (agora funcionarão)
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from common.config import load_config
from common.distributed import init_torch
from common.distributed.advanced import init_sequence_parallel
from common.seed import set_seed
from common.partition import partition_by_size
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.distributed.ops import sync_data

# Verifica o utilitário color_fix (usando caminho relativo)
if os.path.exists("projects/video_diffusion_sr/color_fix.py"):
    from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
    use_colorfix = True
else:
    use_colorfix = False
    print('Atenção!!!!!! A correção de cor não está disponível!')

# --- Configuração de Ambiente e Dependências ---
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)

# Use sys.executable para garantir que estamos usando o pip correto
python_executable = sys.executable
subprocess.run(
    [python_executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"],
    env={**os.environ, "FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    check=True
)

apex_wheel_path = "apex-0.1-cp310-cp310-linux_x86_64.whl"
if os.path.exists(apex_wheel_path):
    subprocess.run([python_executable, "-m", "pip", "install", apex_wheel_path], check=True)
    print("✅ Configuração do Apex concluída.")

# --- Funções Principais ---

def configure_sequence_parallel(sp_size):
    if sp_size > 1:
        init_sequence_parallel(sp_size)

def configure_runner(sp_size):
    # Os caminhos agora são simples e relativos à raiz do repositório
    config_path = 'configs_3b/main.yaml'
    checkpoint_path = 'ckpts/seedvr2_ema_3b.pth'
    
    config = load_config(config_path) # Isto agora funcionará corretamente
    runner = VideoDiffusionInfer(config)
    OmegaConf.set_readonly(runner.config, False)
    
    init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
    configure_sequence_parallel(sp_size)
    runner.configure_dit_model(device="cuda", checkpoint=checkpoint_path)
    runner.configure_vae_model()
    
    if hasattr(runner.vae, "set_memory_limit"):
        runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
    return runner

def generation_step(runner, text_embeds_dict, cond_latents):
    def _move_to_cuda(x):
        return [i.to(torch.device("cuda")) for i in x]

    noises = [torch.randn_like(latent) for latent in cond_latents]
    aug_noises = [torch.randn_like(latent) for latent in cond_latents]
    print(f"Gerando com o formato de ruído: {noises[0].size()}.")
    noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
    noises, aug_noises, cond_latents = list(map(_move_to_cuda, (noises, aug_noises, cond_latents)))
    cond_noise_scale = 0.1

    def _add_noise(x, aug_noise):
        t = torch.tensor([1000.0], device=torch.device("cuda")) * cond_noise_scale
        shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None]
        t = runner.timestep_transform(t, shape)
        print(f"Deslocamento de Timestep de {1000.0 * cond_noise_scale} para {t}.")
        x = runner.schedule.forward(x, aug_noise, t)
        return x

    conditions = [
        runner.get_condition(noise, task="sr", latent_blur=_add_noise(latent_blur, aug_noise))
        for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents)
    ]

    with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
        video_tensors = runner.inference(
            noises=noises, conditions=conditions, dit_offload=False, **text_embeds_dict
        )

    samples = [rearrange(video, "c t h w -> t c h w") for video in video_tensors]
    del video_tensors
    return samples

@spaces.GPU
def generation_loop(video_path, seed=666, fps_out=24, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=1280, res_w=720, sp_size=1):
    if video_path is None:
        return None, None, None
        
    runner = configure_runner(1)

    def _extract_text_embeds():
        positive_prompts_embeds = []
        for _ in original_videos_local:
            # Os caminhos agora são simples
            text_pos_embeds = torch.load('pos_emb.pt')
            text_neg_embeds = torch.load('neg_emb.pt')
            positive_prompts_embeds.append({"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]})
        gc.collect()
        torch.cuda.empty_cache()
        return positive_prompts_embeds

    def cut_videos(videos, sp_size):
        if videos.size(1) > 121:
            videos = videos[:, :121]
        t = videos.size(1)
        if t <= 4 * sp_size:
            padding_needed = 4 * sp_size - t + 1
            if padding_needed > 0:
                padding = torch.cat([videos[:, -1].unsqueeze(1)] * padding_needed, dim=1)
                videos = torch.cat([videos, padding], dim=1)
            return videos
        if (t - 1) % (4 * sp_size) == 0:
            return videos
        else:
            padding_needed = 4 * sp_size - ((t - 1) % (4 * sp_size))
            padding = torch.cat([videos[:, -1].unsqueeze(1)] * padding_needed, dim=1)
            videos = torch.cat([videos, padding], dim=1)
            assert (videos.size(1) - 1) % (4 * sp_size) == 0
            return videos

    runner.config.diffusion.cfg.scale = cfg_scale
    runner.config.diffusion.cfg.rescale = cfg_rescale
    runner.config.diffusion.timesteps.sampling.steps = sample_steps
    runner.configure_diffusion()

    seed = int(seed) % (2**32)
    set_seed(seed, same_across_ranks=True)
    output_base_dir = "output"
    os.makedirs(output_base_dir, exist_ok=True)

    original_videos = [os.path.basename(video_path)]
    original_videos_local = partition_by_size(original_videos, batch_size)
    positive_prompts_embeds = _extract_text_embeds()

    video_transform = Compose([
        NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
        Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
        DivisibleCrop((16, 16)),
        Normalize(0.5, 0.5),
        Rearrange("t c h w -> c t h w"),
    ])

    for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)):
        cond_latents = []
        for _ in videos:
            media_type, _ = mimetypes.guess_type(video_path)
            is_image = media_type and media_type.startswith("image")
            is_video = media_type and media_type.startswith("video")
            
            if is_video:
                video, _, _ = read_video(video_path, output_format="TCHW")
                video = video / 255.0
                if video.size(0) > 121:
                    video = video[:121]
                print(f"Tamanho do vídeo lido: {video.size()}")
                output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.mp4")
            elif is_image:
                img = Image.open(video_path).convert("RGB")
                img_tensor = T.ToTensor()(img).unsqueeze(0)
                video = img_tensor
                print(f"Tamanho da imagem lida: {video.size()}")
                output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.png")
            else:
                raise ValueError("Tipo de arquivo não suportado")
                
            cond_latents.append(video_transform(video.to(torch.device("cuda"))))

        ori_lengths = [v.size(1) for v in cond_latents]
        input_videos = cond_latents
        if is_video:
            cond_latents = [cut_videos(v, sp_size) for v in cond_latents]

        print(f"Codificando vídeos: {[v.size() for v in cond_latents]}")
        cond_latents = runner.vae_encode(cond_latents)

        for i, emb in enumerate(text_embeds["texts_pos"]):
            text_embeds["texts_pos"][i] = emb.to(torch.device("cuda"))
        for i, emb in enumerate(text_embeds["texts_neg"]):
            text_embeds["texts_neg"][i] = emb.to(torch.device("cuda"))

        samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
        del cond_latents

        for _, input_tensor, sample, ori_length in zip(videos, input_videos, samples, ori_lengths):
            if ori_length < sample.shape[0]:
                sample = sample[:ori_length]

            input_tensor = rearrange(input_tensor, "c t h w -> t c h w")
            if use_colorfix:
                sample = wavelet_reconstruction(sample.to("cpu"), input_tensor[:sample.size(0)].to("cpu"))
            else:
                sample = sample.to("cpu")

            sample = rearrange(sample, "t c h w -> t h w c")
            sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
            sample = sample.to(torch.uint8).numpy()

            if is_image:
                mediapy.write_image(output_dir, sample[0])
            else:
                mediapy.write_video(output_dir, sample, fps=fps_out)

        gc.collect()
        torch.cuda.empty_cache()
        if is_image:
            return output_dir, None, output_dir
        else:
            return None, output_dir, output_dir

# --- UI do Gradio ---

with gr.Blocks(title="SeedVR2: Restauração de Vídeo em Um Passo") as demo:
    # Use um caminho absoluto para o arquivo de logo do Gradio para segurança
    logo_path = os.path.abspath("assets/seedvr_logo.png")
    gr.HTML(f"""
        <div style='text-align:center; margin-bottom: 10px;'>
            <img src='file/{logo_path}' style='height:40px;' alt='SeedVR logo'/>
        </div>
        <p><b>Demonstração oficial do Gradio</b> para <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'><b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br>
        🔥 <b>SeedVR2</b> é um algoritmo de restauração de imagem e vídeo em um passo para conteúdo do mundo real e AIGC.</p>
    """)

    with gr.Row():
        input_file = gr.File(label="Carregar imagem ou vídeo", type="filepath")
        with gr.Column():
            seed = gr.Number(label="Seed", value=666)
            fps = gr.Number(label="FPS de Saída (para vídeo)", value=24)
            
    run_button = gr.Button("Executar")
    
    with gr.Row():
        output_image = gr.Image(label="Imagem de Saída")
        output_video = gr.Video(label="Vídeo de Saída")
        
    download_link = gr.File(label="Baixar o resultado")

    run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link])

    gr.HTML("""
        <hr>
        <p>Se você achou o SeedVR útil, por favor ⭐ o <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>repositório no GitHub</a>: 
        <a href="https://github.com/ByteDance-Seed/SeedVR" target="_blank"><img src="https://img.shields.io/github/stars/ByteDance-Seed/SeedVR?style=social" alt="GitHub Stars"></a></p>
        <h4>Aviso</h4>
        <p>Esta demonstração suporta até <b>720p e 121 frames para vídeos ou imagens 2k</b>. Para outros casos de uso, verifique o <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>repositório no GitHub</a>.</p>
        <h4>Limitações</h4>
        <p>Pode falhar em degradações pesadas ou em clipes AIGC com pouco movimento, causando excesso de nitidez ou restauração inadequada.</p>
    """)

demo.queue().launch(share=True)