Spaces:
Paused
Paused
File size: 13,685 Bytes
42f2c22 09b1b8e 7489402 09b1b8e f85ca57 6cbcc74 ea7dfbd f85ca57 ea7dfbd 1d6758a ea7dfbd 1d6758a 4ae44b4 ea7dfbd 1d6758a ea7dfbd f85ca57 ea7dfbd 4ae44b4 42f2c22 657048f 42f2c22 6237836 367bee6 67c0e7b 657048f d0b8777 f85ca57 367bee6 ea7dfbd f85ca57 ea7dfbd 1d6758a f85ca57 ea7dfbd f85ca57 ea7dfbd e276ced e3b4db8 ea7dfbd 5fad6fa de5b2a1 5fad6fa de5b2a1 1d6758a f85ca57 5fad6fa ea7dfbd 42f2c22 ea7dfbd 42f2c22 1fd3071 42f2c22 ea7dfbd 1d6758a f85ca57 ea7dfbd 42f2c22 1fd3071 f85ca57 42f2c22 f85ca57 42f2c22 512f3c8 42f2c22 ea7dfbd 42f2c22 f85ca57 42f2c22 f85ca57 512f3c8 42f2c22 ea7dfbd 42f2c22 f85ca57 42f2c22 f85ca57 42f2c22 f85ca57 42f2c22 f85ca57 42f2c22 f85ca57 ea7dfbd 1d6758a f85ca57 42f2c22 09fd3d7 42f2c22 f85ca57 42f2c22 f85ca57 42f2c22 f85ca57 42f2c22 f85ca57 42f2c22 09b1b8e f85ca57 42f2c22 f85ca57 42f2c22 f85ca57 657048f f85ca57 657048f f85ca57 47bef9f ea7dfbd f85ca57 6571c22 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 1d6758a 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa ea7dfbd 5fad6fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import spaces
import subprocess
import os
import sys
# --- Setup: Clone repository, Change Directory, and Update Python Path ---
# Esta é a abordagem definitiva para corrigir todos os problemas de caminho.
# 1. Clone o repositório
repo_dir_name = "SeedVR2-3B"
if not os.path.exists(repo_dir_name):
print(f"Clonando o repositório {repo_dir_name}...")
subprocess.run(f"git clone https://huggingface.co/spaces/ByteDance-Seed/{repo_dir_name}", shell=True, check=True)
# 2. Mude o diretório de trabalho atual para a raiz do repositório.
# Isso corrige o acesso a arquivos relativos (ex: carregar config.yaml).
os.chdir(repo_dir_name)
print(f"Diretório de trabalho alterado para: {os.getcwd()}")
# 3. Adicione explicitamente o novo diretório de trabalho ao caminho do sistema do Python.
# Isso corrige as importações de módulos (ex: `from data...`).
sys.path.insert(0, os.path.abspath('.'))
print(f"Diretório atual adicionado ao sys.path: {os.path.abspath('.')}")
# --- Código Principal da Aplicação ---
# Agora, todas as importações e cargas de arquivos devem funcionar corretamente.
import torch
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
import datetime
from tqdm import tqdm
import gc
from PIL import Image
import gradio as gr
from pathlib import Path
import shlex
import uuid
import mimetypes
import torchvision.transforms as T
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
# Importações do repositório (agora funcionarão)
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from common.config import load_config
from common.distributed import init_torch
from common.distributed.advanced import init_sequence_parallel
from common.seed import set_seed
from common.partition import partition_by_size
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.distributed.ops import sync_data
# Verifica o utilitário color_fix (usando caminho relativo)
if os.path.exists("projects/video_diffusion_sr/color_fix.py"):
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
use_colorfix = True
else:
use_colorfix = False
print('Atenção!!!!!! A correção de cor não está disponível!')
# --- Configuração de Ambiente e Dependências ---
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)
# Use sys.executable para garantir que estamos usando o pip correto
python_executable = sys.executable
subprocess.run(
[python_executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"],
env={**os.environ, "FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
check=True
)
apex_wheel_path = "apex-0.1-cp310-cp310-linux_x86_64.whl"
if os.path.exists(apex_wheel_path):
subprocess.run([python_executable, "-m", "pip", "install", apex_wheel_path], check=True)
print("✅ Configuração do Apex concluída.")
# --- Funções Principais ---
def configure_sequence_parallel(sp_size):
if sp_size > 1:
init_sequence_parallel(sp_size)
def configure_runner(sp_size):
# Os caminhos agora são simples e relativos à raiz do repositório
config_path = 'configs_3b/main.yaml'
checkpoint_path = 'ckpts/seedvr2_ema_3b.pth'
config = load_config(config_path) # Isto agora funcionará corretamente
runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(runner.config, False)
init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
configure_sequence_parallel(sp_size)
runner.configure_dit_model(device="cuda", checkpoint=checkpoint_path)
runner.configure_vae_model()
if hasattr(runner.vae, "set_memory_limit"):
runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
return runner
def generation_step(runner, text_embeds_dict, cond_latents):
def _move_to_cuda(x):
return [i.to(torch.device("cuda")) for i in x]
noises = [torch.randn_like(latent) for latent in cond_latents]
aug_noises = [torch.randn_like(latent) for latent in cond_latents]
print(f"Gerando com o formato de ruído: {noises[0].size()}.")
noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
noises, aug_noises, cond_latents = list(map(_move_to_cuda, (noises, aug_noises, cond_latents)))
cond_noise_scale = 0.1
def _add_noise(x, aug_noise):
t = torch.tensor([1000.0], device=torch.device("cuda")) * cond_noise_scale
shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None]
t = runner.timestep_transform(t, shape)
print(f"Deslocamento de Timestep de {1000.0 * cond_noise_scale} para {t}.")
x = runner.schedule.forward(x, aug_noise, t)
return x
conditions = [
runner.get_condition(noise, task="sr", latent_blur=_add_noise(latent_blur, aug_noise))
for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents)
]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = runner.inference(
noises=noises, conditions=conditions, dit_offload=False, **text_embeds_dict
)
samples = [rearrange(video, "c t h w -> t c h w") for video in video_tensors]
del video_tensors
return samples
@spaces.GPU
def generation_loop(video_path, seed=666, fps_out=24, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=1280, res_w=720, sp_size=1):
if video_path is None:
return None, None, None
runner = configure_runner(1)
def _extract_text_embeds():
positive_prompts_embeds = []
for _ in original_videos_local:
# Os caminhos agora são simples
text_pos_embeds = torch.load('pos_emb.pt')
text_neg_embeds = torch.load('neg_emb.pt')
positive_prompts_embeds.append({"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]})
gc.collect()
torch.cuda.empty_cache()
return positive_prompts_embeds
def cut_videos(videos, sp_size):
if videos.size(1) > 121:
videos = videos[:, :121]
t = videos.size(1)
if t <= 4 * sp_size:
padding_needed = 4 * sp_size - t + 1
if padding_needed > 0:
padding = torch.cat([videos[:, -1].unsqueeze(1)] * padding_needed, dim=1)
videos = torch.cat([videos, padding], dim=1)
return videos
if (t - 1) % (4 * sp_size) == 0:
return videos
else:
padding_needed = 4 * sp_size - ((t - 1) % (4 * sp_size))
padding = torch.cat([videos[:, -1].unsqueeze(1)] * padding_needed, dim=1)
videos = torch.cat([videos, padding], dim=1)
assert (videos.size(1) - 1) % (4 * sp_size) == 0
return videos
runner.config.diffusion.cfg.scale = cfg_scale
runner.config.diffusion.cfg.rescale = cfg_rescale
runner.config.diffusion.timesteps.sampling.steps = sample_steps
runner.configure_diffusion()
seed = int(seed) % (2**32)
set_seed(seed, same_across_ranks=True)
output_base_dir = "output"
os.makedirs(output_base_dir, exist_ok=True)
original_videos = [os.path.basename(video_path)]
original_videos_local = partition_by_size(original_videos, batch_size)
positive_prompts_embeds = _extract_text_embeds()
video_transform = Compose([
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
])
for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)):
cond_latents = []
for _ in videos:
media_type, _ = mimetypes.guess_type(video_path)
is_image = media_type and media_type.startswith("image")
is_video = media_type and media_type.startswith("video")
if is_video:
video, _, _ = read_video(video_path, output_format="TCHW")
video = video / 255.0
if video.size(0) > 121:
video = video[:121]
print(f"Tamanho do vídeo lido: {video.size()}")
output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.mp4")
elif is_image:
img = Image.open(video_path).convert("RGB")
img_tensor = T.ToTensor()(img).unsqueeze(0)
video = img_tensor
print(f"Tamanho da imagem lida: {video.size()}")
output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.png")
else:
raise ValueError("Tipo de arquivo não suportado")
cond_latents.append(video_transform(video.to(torch.device("cuda"))))
ori_lengths = [v.size(1) for v in cond_latents]
input_videos = cond_latents
if is_video:
cond_latents = [cut_videos(v, sp_size) for v in cond_latents]
print(f"Codificando vídeos: {[v.size() for v in cond_latents]}")
cond_latents = runner.vae_encode(cond_latents)
for i, emb in enumerate(text_embeds["texts_pos"]):
text_embeds["texts_pos"][i] = emb.to(torch.device("cuda"))
for i, emb in enumerate(text_embeds["texts_neg"]):
text_embeds["texts_neg"][i] = emb.to(torch.device("cuda"))
samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
del cond_latents
for _, input_tensor, sample, ori_length in zip(videos, input_videos, samples, ori_lengths):
if ori_length < sample.shape[0]:
sample = sample[:ori_length]
input_tensor = rearrange(input_tensor, "c t h w -> t c h w")
if use_colorfix:
sample = wavelet_reconstruction(sample.to("cpu"), input_tensor[:sample.size(0)].to("cpu"))
else:
sample = sample.to("cpu")
sample = rearrange(sample, "t c h w -> t h w c")
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
sample = sample.to(torch.uint8).numpy()
if is_image:
mediapy.write_image(output_dir, sample[0])
else:
mediapy.write_video(output_dir, sample, fps=fps_out)
gc.collect()
torch.cuda.empty_cache()
if is_image:
return output_dir, None, output_dir
else:
return None, output_dir, output_dir
# --- UI do Gradio ---
with gr.Blocks(title="SeedVR2: Restauração de Vídeo em Um Passo") as demo:
# Use um caminho absoluto para o arquivo de logo do Gradio para segurança
logo_path = os.path.abspath("assets/seedvr_logo.png")
gr.HTML(f"""
<div style='text-align:center; margin-bottom: 10px;'>
<img src='file/{logo_path}' style='height:40px;' alt='SeedVR logo'/>
</div>
<p><b>Demonstração oficial do Gradio</b> para <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'><b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br>
🔥 <b>SeedVR2</b> é um algoritmo de restauração de imagem e vídeo em um passo para conteúdo do mundo real e AIGC.</p>
""")
with gr.Row():
input_file = gr.File(label="Carregar imagem ou vídeo", type="filepath")
with gr.Column():
seed = gr.Number(label="Seed", value=666)
fps = gr.Number(label="FPS de Saída (para vídeo)", value=24)
run_button = gr.Button("Executar")
with gr.Row():
output_image = gr.Image(label="Imagem de Saída")
output_video = gr.Video(label="Vídeo de Saída")
download_link = gr.File(label="Baixar o resultado")
run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link])
gr.HTML("""
<hr>
<p>Se você achou o SeedVR útil, por favor ⭐ o <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>repositório no GitHub</a>:
<a href="https://github.com/ByteDance-Seed/SeedVR" target="_blank"><img src="https://img.shields.io/github/stars/ByteDance-Seed/SeedVR?style=social" alt="GitHub Stars"></a></p>
<h4>Aviso</h4>
<p>Esta demonstração suporta até <b>720p e 121 frames para vídeos ou imagens 2k</b>. Para outros casos de uso, verifique o <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>repositório no GitHub</a>.</p>
<h4>Limitações</h4>
<p>Pode falhar em degradações pesadas ou em clipes AIGC com pouco movimento, causando excesso de nitidez ou restauração inadequada.</p>
""")
demo.queue().launch(share=True) |