File size: 10,039 Bytes
42f2c22
 
 
 
397e9af
42f2c22
 
 
 
 
 
 
 
397e9af
 
09b1b8e
f85ca57
8ab9604
397e9af
71cd5d1
 
 
 
8ab9604
71cd5d1
 
8ab9604
 
71cd5d1
 
00c0ed2
397e9af
00c0ed2
397e9af
636f837
 
 
77577e4
397e9af
 
 
 
 
 
 
8ab9604
35c31cc
 
 
04e5cdc
35c31cc
6870040
6237836
746b66d
 
77577e4
746b66d
71cd5d1
746b66d
71cd5d1
 
 
 
746b66d
 
 
 
 
8055a69
71cd5d1
 
 
 
 
 
 
746b66d
71cd5d1
 
746b66d
 
 
 
71cd5d1
8ab9604
 
71cd5d1
e3b4db8
397e9af
77577e4
 
8ab9604
 
 
 
 
 
 
 
 
 
 
 
 
746b66d
 
 
 
 
 
 
 
 
42f2c22
8ab9604
 
 
 
 
397e9af
636f837
 
8ab9604
71cd5d1
 
42f2c22
 
1fd3071
8ab9604
42f2c22
 
 
 
 
77577e4
 
 
 
 
 
42f2c22
71cd5d1
397e9af
42f2c22
397e9af
42f2c22
71cd5d1
 
42f2c22
8ab9604
71cd5d1
42f2c22
71cd5d1
 
42f2c22
77577e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c06198c
71cd5d1
7af19da
77577e4
636f837
 
 
 
42f2c22
71cd5d1
8ab9604
636f837
 
 
 
 
77577e4
636f837
 
71cd5d1
 
397e9af
71cd5d1
77577e4
 
71cd5d1
 
 
 
397e9af
77577e4
 
 
 
 
 
 
 
 
71cd5d1
 
77577e4
71cd5d1
 
397e9af
71cd5d1
 
 
 
 
 
 
 
77577e4
5fad6fa
71cd5d1
5fad6fa
71cd5d1
 
ea7dfbd
71cd5d1
 
 
5fad6fa
636f837
35c31cc
5fad6fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# //     http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import spaces
import subprocess
import os
import sys

# --- ETAPA 1: Clonar o Repositório do GitHub ---
repo_name = "SeedVR"
if not os.path.exists(repo_name):
    print(f"Clonando o repositório {repo_name} do GitHub...")
    subprocess.run(f"git clone https://github.com/ByteDance-Seed/{repo_name}.git", shell=True, check=True)

# --- ETAPA 2: Mudar para o Diretório e Configurar o Ambiente ---
os.chdir(repo_name)
print(f"Diretório de trabalho alterado para: {os.getcwd()}")

sys.path.insert(0, os.path.abspath('.'))
print(f"Diretório atual adicionado ao sys.path.")

# --- ETAPA 3: Instalar Dependências Corretamente ---
python_executable = sys.executable

print("Instalando NumPy compatível...")
subprocess.run([python_executable, "-m", "pip", "install", "numpy<2.0"], check=True)

print("Filtrando requirements.txt para evitar conflitos de versão...")
with open("requirements.txt", "r") as f_in, open("filtered_requirements.txt", "w") as f_out:
    for line in f_in:
        if not line.strip().startswith(('torch', 'torchvision')):
            f_out.write(line)

print("Instalando dependências filtradas...")
subprocess.run([python_executable, "-m", "pip", "install", "-r", "filtered_requirements.txt"], check=True)

# CORREÇÃO CRÍTICA: Remover a versão específica do flash-attn.
# Deixar o pip escolher a versão compatível com a GPU do ambiente.
print("Instalando a versão compatível do flash-attn...")
subprocess.run([python_executable, "-m", "pip", "install", "flash-attn==2.3.6", "--no-build-isolation"], check=True)


from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file, get_dir
import torch

def load_file_from_url(url, model_dir='.', progress=True, file_name=None):
    os.makedirs(model_dir, exist_ok=True)
    if not file_name:
        parts = urlparse(url)
        file_name = os.path.basename(parts.path)
    cached_file = os.path.join(model_dir, file_name)
    if not os.path.exists(cached_file):
        print(f'Baixando: "{url}" para {cached_file}\n')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
    return cached_file

apex_url = 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl'
apex_wheel_path = load_file_from_url(url=apex_url)
print("Instalando Apex a partir do wheel baixado...")
subprocess.run([python_executable, "-m", "pip", "install", "--force-reinstall", "--no-cache-dir", apex_wheel_path], check=True)
print("✅ Configuração do Apex concluída.")

# --- ETAPA 4: Baixar os Modelos Pré-treinados ---
print("Baixando modelos pré-treinados...")
pretrain_model_url = {
    'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
    'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
    'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
    'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt',
}

Path('./ckpts').mkdir(exist_ok=True)
for key, url in pretrain_model_url.items():
    model_dir = './ckpts' if key in ['vae', 'dit'] else '.'
    load_file_from_url(url=url, model_dir=model_dir)


# --- ETAPA 5: Inicialização Global do Modelo (FEITA APENAS UMA VEZ) ---
print("Inicializando o modelo e o ambiente distribuído (uma única vez)...")
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
import datetime
from tqdm import tqdm
import gc
from PIL import Image
import gradio as gr
import uuid
import mimetypes
import torchvision.transforms as T
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video

from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from common.config import load_config
from common.distributed import init_torch
from common.seed import set_seed
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.distributed.ops import sync_data

os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)

use_colorfix = os.path.exists("projects/video_diffusion_sr/color_fix.py")
if use_colorfix:
    from projects.video_diffusion_sr.color_fix import wavelet_reconstruction

def configure_runner():
    config = load_config('configs_3b/main.yaml')
    runner = VideoDiffusionInfer(config)
    OmegaConf.set_readonly(runner.config, False)
    init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
    runner.configure_dit_model(device="cuda", checkpoint='ckpts/seedvr2_ema_3b.pth')
    runner.configure_vae_model()
    if hasattr(runner.vae, "set_memory_limit"):
        runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
    return runner

GLOBAL_RUNNER = configure_runner()
print("✅ Setup completo. Aplicação pronta para receber requisições.")


# --- ETAPA 6: Funções de Inferência e UI do Gradio ---

def generation_step(runner, text_embeds_dict, cond_latents):
    def _move_to_cuda(x): return [i.to("cuda") for i in x]
    noises, aug_noises = [torch.randn_like(l) for l in cond_latents], [torch.randn_like(l) for l in cond_latents]
    noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
    noises, aug_noises, cond_latents = map(_move_to_cuda, (noises, aug_noises, cond_latents))
    def _add_noise(x, aug_noise):
        t = torch.tensor([100.0], device="cuda")
        shape = torch.tensor(x.shape[1:], device="cuda")[None]
        t = runner.timestep_transform(t, shape)
        return runner.schedule.forward(x, aug_noise, t)
    conditions = [runner.get_condition(n, task="sr", latent_blur=_add_noise(l, an)) for n, an, l in zip(noises, aug_noises, cond_latents)]
    with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
        video_tensors = runner.inference(noises=noises, conditions=conditions, **text_embeds_dict)
    return [rearrange(v, "c t h w -> t c h w") for v in video_tensors]

def cut_videos(videos, sp_size=1):
    t = videos.size(1)
    if t > 121:
        videos = videos[:, :121]
        t = 121
    if (t - 1) % (4 * sp_size) == 0:
        return videos
    else:
        padding_needed = 4 * sp_size - ((t - 1) % (4 * sp_size))
        last_frame = videos[:, -1].unsqueeze(1)
        padding = last_frame.repeat(1, padding_needed, 1, 1)
        videos = torch.cat([videos, padding], dim=1)
        assert (videos.size(1) - 1) % (4 * sp_size) == 0
        return videos

@spaces.GPU
def generation_loop(video_path, seed=666, fps_out=24):
    if video_path is None: return None, None, None
    runner = GLOBAL_RUNNER
    text_embeds = {
        "texts_pos": [torch.load('pos_emb.pt', weights_only=True).to("cuda")], 
        "texts_neg": [torch.load('neg_emb.pt', weights_only=True).to("cuda")]
    }
    runner.configure_diffusion()
    set_seed(int(seed))
    os.makedirs("output", exist_ok=True)
    
    res_h, res_w = 1280, 720
    transform = Compose([
        NaResize(resolution=(res_h * res_w)**0.5, mode="area", downsample_only=False),
        Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
        DivisibleCrop((16, 16)), Normalize(0.5, 0.5), Rearrange("t c h w -> c t h w")
    ])

    media_type, _ = mimetypes.guess_type(video_path)
    is_video = media_type and media_type.startswith("video")
    
    if is_video:
        video, _, _ = read_video(video_path, output_format="TCHW", pts_unit="sec")
        video = video / 255.0
        output_path = os.path.join("output", f"{uuid.uuid4()}.mp4")
    else:
        video = T.ToTensor()(Image.open(video_path).convert("RGB")).unsqueeze(0)
        output_path = os.path.join("output", f"{uuid.uuid4()}.png")

    transformed_video = transform(video.to("cuda"))
    ori_length = transformed_video.size(1)

    if is_video:
        padded_video = cut_videos(transformed_video)
        cond_latents = [padded_video]
    else:
        cond_latents = [transformed_video]
        
    cond_latents = runner.vae_encode(cond_latents)
    samples = generation_step(runner, text_embeds, cond_latents)
    
    sample = samples[0][:ori_length].cpu()
    sample = rearrange(sample, "t c h w -> t h w c").clip(-1, 1).add(1).mul(127.5).byte().numpy()

    if is_video:
        mediapy.write_video(output_path, sample, fps=fps_out)
        return None, output_path, output_path
    else:
        mediapy.write_image(output_path, sample[0])
        return output_path, None, output_path

with gr.Blocks(title="SeedVR") as demo:
    gr.HTML(f"""<div style='text-align:center; margin-bottom: 10px;'><img src='file/{os.path.abspath("assets/seedvr_logo.png")}' style='height:40px;'/></div>...""")
    with gr.Row():
        input_file = gr.File(label="Carregar Imagem ou Vídeo")
        with gr.Column():
            seed = gr.Number(label="Seed", value=42)
            fps = gr.Number(label="FPS de Saída", value=24)
    run_button = gr.Button("Executar")
    output_image = gr.Image(label="Imagem de Saída")
    output_video = gr.Video(label="Vídeo de Saída")
    download_link = gr.File(label="Baixar Resultado")
    run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link])
    

demo.queue().launch(share=True)