Spaces:
Paused
Paused
File size: 10,039 Bytes
42f2c22 397e9af 42f2c22 397e9af 09b1b8e f85ca57 8ab9604 397e9af 71cd5d1 8ab9604 71cd5d1 8ab9604 71cd5d1 00c0ed2 397e9af 00c0ed2 397e9af 636f837 77577e4 397e9af 8ab9604 35c31cc 04e5cdc 35c31cc 6870040 6237836 746b66d 77577e4 746b66d 71cd5d1 746b66d 71cd5d1 746b66d 8055a69 71cd5d1 746b66d 71cd5d1 746b66d 71cd5d1 8ab9604 71cd5d1 e3b4db8 397e9af 77577e4 8ab9604 746b66d 42f2c22 8ab9604 397e9af 636f837 8ab9604 71cd5d1 42f2c22 1fd3071 8ab9604 42f2c22 77577e4 42f2c22 71cd5d1 397e9af 42f2c22 397e9af 42f2c22 71cd5d1 42f2c22 8ab9604 71cd5d1 42f2c22 71cd5d1 42f2c22 77577e4 c06198c 71cd5d1 7af19da 77577e4 636f837 42f2c22 71cd5d1 8ab9604 636f837 77577e4 636f837 71cd5d1 397e9af 71cd5d1 77577e4 71cd5d1 397e9af 77577e4 71cd5d1 77577e4 71cd5d1 397e9af 71cd5d1 77577e4 5fad6fa 71cd5d1 5fad6fa 71cd5d1 ea7dfbd 71cd5d1 5fad6fa 636f837 35c31cc 5fad6fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import spaces
import subprocess
import os
import sys
# --- ETAPA 1: Clonar o Repositório do GitHub ---
repo_name = "SeedVR"
if not os.path.exists(repo_name):
print(f"Clonando o repositório {repo_name} do GitHub...")
subprocess.run(f"git clone https://github.com/ByteDance-Seed/{repo_name}.git", shell=True, check=True)
# --- ETAPA 2: Mudar para o Diretório e Configurar o Ambiente ---
os.chdir(repo_name)
print(f"Diretório de trabalho alterado para: {os.getcwd()}")
sys.path.insert(0, os.path.abspath('.'))
print(f"Diretório atual adicionado ao sys.path.")
# --- ETAPA 3: Instalar Dependências Corretamente ---
python_executable = sys.executable
print("Instalando NumPy compatível...")
subprocess.run([python_executable, "-m", "pip", "install", "numpy<2.0"], check=True)
print("Filtrando requirements.txt para evitar conflitos de versão...")
with open("requirements.txt", "r") as f_in, open("filtered_requirements.txt", "w") as f_out:
for line in f_in:
if not line.strip().startswith(('torch', 'torchvision')):
f_out.write(line)
print("Instalando dependências filtradas...")
subprocess.run([python_executable, "-m", "pip", "install", "-r", "filtered_requirements.txt"], check=True)
# CORREÇÃO CRÍTICA: Remover a versão específica do flash-attn.
# Deixar o pip escolher a versão compatível com a GPU do ambiente.
print("Instalando a versão compatível do flash-attn...")
subprocess.run([python_executable, "-m", "pip", "install", "flash-attn==2.3.6", "--no-build-isolation"], check=True)
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file, get_dir
import torch
def load_file_from_url(url, model_dir='.', progress=True, file_name=None):
os.makedirs(model_dir, exist_ok=True)
if not file_name:
parts = urlparse(url)
file_name = os.path.basename(parts.path)
cached_file = os.path.join(model_dir, file_name)
if not os.path.exists(cached_file):
print(f'Baixando: "{url}" para {cached_file}\n')
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
return cached_file
apex_url = 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl'
apex_wheel_path = load_file_from_url(url=apex_url)
print("Instalando Apex a partir do wheel baixado...")
subprocess.run([python_executable, "-m", "pip", "install", "--force-reinstall", "--no-cache-dir", apex_wheel_path], check=True)
print("✅ Configuração do Apex concluída.")
# --- ETAPA 4: Baixar os Modelos Pré-treinados ---
print("Baixando modelos pré-treinados...")
pretrain_model_url = {
'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt',
}
Path('./ckpts').mkdir(exist_ok=True)
for key, url in pretrain_model_url.items():
model_dir = './ckpts' if key in ['vae', 'dit'] else '.'
load_file_from_url(url=url, model_dir=model_dir)
# --- ETAPA 5: Inicialização Global do Modelo (FEITA APENAS UMA VEZ) ---
print("Inicializando o modelo e o ambiente distribuído (uma única vez)...")
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
import datetime
from tqdm import tqdm
import gc
from PIL import Image
import gradio as gr
import uuid
import mimetypes
import torchvision.transforms as T
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from common.config import load_config
from common.distributed import init_torch
from common.seed import set_seed
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.distributed.ops import sync_data
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)
use_colorfix = os.path.exists("projects/video_diffusion_sr/color_fix.py")
if use_colorfix:
from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
def configure_runner():
config = load_config('configs_3b/main.yaml')
runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(runner.config, False)
init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
runner.configure_dit_model(device="cuda", checkpoint='ckpts/seedvr2_ema_3b.pth')
runner.configure_vae_model()
if hasattr(runner.vae, "set_memory_limit"):
runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
return runner
GLOBAL_RUNNER = configure_runner()
print("✅ Setup completo. Aplicação pronta para receber requisições.")
# --- ETAPA 6: Funções de Inferência e UI do Gradio ---
def generation_step(runner, text_embeds_dict, cond_latents):
def _move_to_cuda(x): return [i.to("cuda") for i in x]
noises, aug_noises = [torch.randn_like(l) for l in cond_latents], [torch.randn_like(l) for l in cond_latents]
noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
noises, aug_noises, cond_latents = map(_move_to_cuda, (noises, aug_noises, cond_latents))
def _add_noise(x, aug_noise):
t = torch.tensor([100.0], device="cuda")
shape = torch.tensor(x.shape[1:], device="cuda")[None]
t = runner.timestep_transform(t, shape)
return runner.schedule.forward(x, aug_noise, t)
conditions = [runner.get_condition(n, task="sr", latent_blur=_add_noise(l, an)) for n, an, l in zip(noises, aug_noises, cond_latents)]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = runner.inference(noises=noises, conditions=conditions, **text_embeds_dict)
return [rearrange(v, "c t h w -> t c h w") for v in video_tensors]
def cut_videos(videos, sp_size=1):
t = videos.size(1)
if t > 121:
videos = videos[:, :121]
t = 121
if (t - 1) % (4 * sp_size) == 0:
return videos
else:
padding_needed = 4 * sp_size - ((t - 1) % (4 * sp_size))
last_frame = videos[:, -1].unsqueeze(1)
padding = last_frame.repeat(1, padding_needed, 1, 1)
videos = torch.cat([videos, padding], dim=1)
assert (videos.size(1) - 1) % (4 * sp_size) == 0
return videos
@spaces.GPU
def generation_loop(video_path, seed=666, fps_out=24):
if video_path is None: return None, None, None
runner = GLOBAL_RUNNER
text_embeds = {
"texts_pos": [torch.load('pos_emb.pt', weights_only=True).to("cuda")],
"texts_neg": [torch.load('neg_emb.pt', weights_only=True).to("cuda")]
}
runner.configure_diffusion()
set_seed(int(seed))
os.makedirs("output", exist_ok=True)
res_h, res_w = 1280, 720
transform = Compose([
NaResize(resolution=(res_h * res_w)**0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)), Normalize(0.5, 0.5), Rearrange("t c h w -> c t h w")
])
media_type, _ = mimetypes.guess_type(video_path)
is_video = media_type and media_type.startswith("video")
if is_video:
video, _, _ = read_video(video_path, output_format="TCHW", pts_unit="sec")
video = video / 255.0
output_path = os.path.join("output", f"{uuid.uuid4()}.mp4")
else:
video = T.ToTensor()(Image.open(video_path).convert("RGB")).unsqueeze(0)
output_path = os.path.join("output", f"{uuid.uuid4()}.png")
transformed_video = transform(video.to("cuda"))
ori_length = transformed_video.size(1)
if is_video:
padded_video = cut_videos(transformed_video)
cond_latents = [padded_video]
else:
cond_latents = [transformed_video]
cond_latents = runner.vae_encode(cond_latents)
samples = generation_step(runner, text_embeds, cond_latents)
sample = samples[0][:ori_length].cpu()
sample = rearrange(sample, "t c h w -> t h w c").clip(-1, 1).add(1).mul(127.5).byte().numpy()
if is_video:
mediapy.write_video(output_path, sample, fps=fps_out)
return None, output_path, output_path
else:
mediapy.write_image(output_path, sample[0])
return output_path, None, output_path
with gr.Blocks(title="SeedVR") as demo:
gr.HTML(f"""<div style='text-align:center; margin-bottom: 10px;'><img src='file/{os.path.abspath("assets/seedvr_logo.png")}' style='height:40px;'/></div>...""")
with gr.Row():
input_file = gr.File(label="Carregar Imagem ou Vídeo")
with gr.Column():
seed = gr.Number(label="Seed", value=42)
fps = gr.Number(label="FPS de Saída", value=24)
run_button = gr.Button("Executar")
output_image = gr.Image(label="Imagem de Saída")
output_video = gr.Video(label="Vídeo de Saída")
download_link = gr.File(label="Baixar Resultado")
run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link])
demo.queue().launch(share=True) |