Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -78,15 +78,18 @@ os.environ["MASTER_PORT"] = "12355"
|
|
78 |
os.environ["RANK"] = str(0)
|
79 |
os.environ["WORLD_SIZE"] = str(1)
|
80 |
|
|
|
|
|
81 |
subprocess.run(
|
82 |
-
"pip install flash-attn --no-build-isolation",
|
83 |
-
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
84 |
-
|
85 |
)
|
86 |
|
87 |
apex_wheel_path = os.path.join(repo_dir, "apex-0.1-cp310-cp310-linux_x86_64.whl")
|
88 |
if os.path.exists(apex_wheel_path):
|
89 |
-
|
|
|
90 |
print("✅ Apex setup completed.")
|
91 |
|
92 |
# --- Core Functions ---
|
@@ -219,4 +222,93 @@ def generation_loop(video_path, seed=666, fps_out=24, batch_size=1, cfg_scale=1.
|
|
219 |
output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.mp4")
|
220 |
elif is_image:
|
221 |
img = Image.open(video_path).convert("RGB")
|
222 |
-
img_tensor = T.ToTensor()(img).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
os.environ["RANK"] = str(0)
|
79 |
os.environ["WORLD_SIZE"] = str(1)
|
80 |
|
81 |
+
# CORREÇÃO: Usar sys.executable para chamar o pip corretamente
|
82 |
+
python_executable = sys.executable
|
83 |
subprocess.run(
|
84 |
+
[python_executable, "-m", "pip", "install", "flash-attn", "--no-build-isolation"],
|
85 |
+
env={**os.environ, "FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
86 |
+
check=True
|
87 |
)
|
88 |
|
89 |
apex_wheel_path = os.path.join(repo_dir, "apex-0.1-cp310-cp310-linux_x86_64.whl")
|
90 |
if os.path.exists(apex_wheel_path):
|
91 |
+
# CORREÇÃO: Usar sys.executable aqui também
|
92 |
+
subprocess.run([python_executable, "-m", "pip", "install", apex_wheel_path], check=True)
|
93 |
print("✅ Apex setup completed.")
|
94 |
|
95 |
# --- Core Functions ---
|
|
|
222 |
output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.mp4")
|
223 |
elif is_image:
|
224 |
img = Image.open(video_path).convert("RGB")
|
225 |
+
img_tensor = T.ToTensor()(img).unsqueeze(0)
|
226 |
+
video = img_tensor
|
227 |
+
print(f"Read Image size: {video.size()}")
|
228 |
+
output_dir = os.path.join(output_base_dir, f"{uuid.uuid4()}.png")
|
229 |
+
else:
|
230 |
+
raise ValueError("Unsupported file type")
|
231 |
+
|
232 |
+
cond_latents.append(video_transform(video.to(torch.device("cuda"))))
|
233 |
+
|
234 |
+
ori_lengths = [v.size(1) for v in cond_latents]
|
235 |
+
input_videos = cond_latents
|
236 |
+
if is_video:
|
237 |
+
cond_latents = [cut_videos(v, sp_size) for v in cond_latents]
|
238 |
+
|
239 |
+
print(f"Encoding videos: {[v.size() for v in cond_latents]}")
|
240 |
+
cond_latents = runner.vae_encode(cond_latents)
|
241 |
+
|
242 |
+
for i, emb in enumerate(text_embeds["texts_pos"]):
|
243 |
+
text_embeds["texts_pos"][i] = emb.to(torch.device("cuda"))
|
244 |
+
for i, emb in enumerate(text_embeds["texts_neg"]):
|
245 |
+
text_embeds["texts_neg"][i] = emb.to(torch.device("cuda"))
|
246 |
+
|
247 |
+
samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
|
248 |
+
del cond_latents
|
249 |
+
|
250 |
+
for _, input_tensor, sample, ori_length in zip(videos, input_videos, samples, ori_lengths):
|
251 |
+
if ori_length < sample.shape[0]:
|
252 |
+
sample = sample[:ori_length]
|
253 |
+
|
254 |
+
input_tensor = rearrange(input_tensor, "c t h w -> t c h w")
|
255 |
+
if use_colorfix:
|
256 |
+
sample = wavelet_reconstruction(sample.to("cpu"), input_tensor[:sample.size(0)].to("cpu"))
|
257 |
+
else:
|
258 |
+
sample = sample.to("cpu")
|
259 |
+
|
260 |
+
sample = rearrange(sample, "t c h w -> t h w c")
|
261 |
+
sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
262 |
+
sample = sample.to(torch.uint8).numpy()
|
263 |
+
|
264 |
+
if is_image:
|
265 |
+
mediapy.write_image(output_dir, sample[0])
|
266 |
+
else:
|
267 |
+
mediapy.write_video(output_dir, sample, fps=fps_out)
|
268 |
+
|
269 |
+
gc.collect()
|
270 |
+
torch.cuda.empty_cache()
|
271 |
+
if is_image:
|
272 |
+
return output_dir, None, output_dir
|
273 |
+
else:
|
274 |
+
return None, output_dir, output_dir
|
275 |
+
|
276 |
+
# --- Gradio UI ---
|
277 |
+
|
278 |
+
with gr.Blocks(title="SeedVR2: One-Step Video Restoration") as demo:
|
279 |
+
logo_path = os.path.join(repo_dir, "assets/seedvr_logo.png")
|
280 |
+
gr.HTML(f"""
|
281 |
+
<div style='text-align:center; margin-bottom: 10px;'>
|
282 |
+
<img src='file/{logo_path}' style='height:40px;' alt='SeedVR logo'/>
|
283 |
+
</div>
|
284 |
+
<p><b>Official Gradio demo</b> for <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'><b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br>
|
285 |
+
🔥 <b>SeedVR2</b> is a one-step image and video restoration algorithm for real-world and AIGC content.</p>
|
286 |
+
""")
|
287 |
+
|
288 |
+
with gr.Row():
|
289 |
+
input_file = gr.File(label="Upload image or video", type="filepath")
|
290 |
+
with gr.Column():
|
291 |
+
seed = gr.Number(label="Seed", value=666)
|
292 |
+
fps = gr.Number(label="Output FPS (for video)", value=24)
|
293 |
+
|
294 |
+
run_button = gr.Button("Run")
|
295 |
+
|
296 |
+
with gr.Row():
|
297 |
+
output_image = gr.Image(label="Output Image")
|
298 |
+
output_video = gr.Video(label="Output Video")
|
299 |
+
|
300 |
+
download_link = gr.File(label="Download the output")
|
301 |
+
|
302 |
+
run_button.click(fn=generation_loop, inputs=[input_file, seed, fps], outputs=[output_image, output_video, download_link])
|
303 |
+
|
304 |
+
gr.HTML("""
|
305 |
+
<hr>
|
306 |
+
<p>If you find SeedVR helpful, please ⭐ the <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repository</a>:
|
307 |
+
<a href="https://github.com/ByteDance-Seed/SeedVR" target="_blank"><img src="https://img.shields.io/github/stars/ByteDance-Seed/SeedVR?style=social" alt="GitHub Stars"></a></p>
|
308 |
+
<h4>Notice</h4>
|
309 |
+
<p>This demo supports up to <b>720p and 121 frames for videos or 2k images</b>. For other use cases, check the <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repo</a>.</p>
|
310 |
+
<h4>Limitations</h4>
|
311 |
+
<p>May fail on heavy degradations or small-motion AIGC clips, causing oversharpening or poor restoration.</p>
|
312 |
+
""")
|
313 |
+
|
314 |
+
demo.queue().launch(share=True)
|