Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,863 Bytes
0bac694 5de8611 cff3f6e 0bac694 5de8611 0bac694 5de8611 0bac694 5de8611 0bac694 5de8611 0bac694 dc08c30 0bac694 5de8611 0bac694 dc08c30 5de8611 dc08c30 5de8611 dc08c30 5de8611 dc08c30 5de8611 dc08c30 5de8611 dc08c30 5de8611 dc08c30 5de8611 dc08c30 5de8611 0bac694 5de8611 cff3f6e 5de8611 0bac694 5de8611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import os
import librosa
import soundfile as sf
import numpy as np
import argparse # Add this line
import gc
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl, window='hann')
spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl, window='hann')
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl, length):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl, length=length, window='hann')
wave_right = librosa.istft(spec_right, hop_length=hl, length=length, window='hann')
wave = np.asfortranarray([wave_left, wave_right])
return wave
def absmax(a, *, axis):
dims = list(a.shape)
dims.pop(axis)
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)])
argmax = np.abs(a).argmax(axis=axis)
insert_pos = (len(a.shape) + axis) % len(a.shape)
indices.insert(insert_pos, argmax)
return a[tuple(indices)]
def absmin(a, *, axis):
dims = list(a.shape)
dims.pop(axis)
indices = list(np.ogrid[tuple(slice(0, d) for d in dims)])
argmax = np.abs(a).argmin(axis=axis)
insert_pos = (len(a.shape) + axis) % len(a.shape)
indices.insert(insert_pos, argmax)
return a[tuple(indices)]
def lambda_max(arr, axis=None, key=None, keepdims=False):
idxs = np.argmax(key(arr), axis)
if axis is not None:
idxs = np.expand_dims(idxs, axis)
result = np.take_along_axis(arr, idxs, axis)
if not keepdims:
result = np.squeeze(result, axis=axis)
return result
else:
return arr.flatten()[idxs]
def lambda_min(arr, axis=None, key=None, keepdims=False):
idxs = np.argmin(key(arr), axis)
if axis is not None:
idxs = np.expand_dims(idxs, axis)
result = np.take_along_axis(arr, idxs, axis)
if not keepdims:
result = np.squeeze(result, axis=axis)
return result
else:
return arr.flatten()[idxs]
def average_waveforms(pred_track, weights, algorithm, chunk_length):
pred_track = np.array(pred_track)
pred_track = np.array([p[:, :chunk_length] if p.shape[1] > chunk_length else np.pad(p, ((0, 0), (0, chunk_length - p.shape[1])), 'constant') for p in pred_track])
mod_track = []
for i in range(pred_track.shape[0]):
if algorithm == 'avg_wave':
mod_track.append(pred_track[i] * weights[i])
elif algorithm in ['median_wave', 'min_wave', 'max_wave']:
mod_track.append(pred_track[i])
elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']:
spec = stft(pred_track[i], nfft=2048, hl=1024)
if algorithm == 'avg_fft':
mod_track.append(spec * weights[i])
else:
mod_track.append(spec)
pred_track = np.array(mod_track)
if algorithm == 'avg_wave':
pred_track = pred_track.sum(axis=0)
pred_track /= np.array(weights).sum()
elif algorithm == 'median_wave':
pred_track = np.median(pred_track, axis=0)
elif algorithm == 'min_wave':
pred_track = lambda_min(pred_track, axis=0, key=np.abs)
elif algorithm == 'max_wave':
pred_track = lambda_max(pred_track, axis=0, key=np.abs)
elif algorithm == 'avg_fft':
pred_track = pred_track.sum(axis=0)
pred_track /= np.array(weights).sum()
pred_track = istft(pred_track, 1024, chunk_length)
elif algorithm == 'min_fft':
pred_track = lambda_min(pred_track, axis=0, key=np.abs)
pred_track = istft(pred_track, 1024, chunk_length)
elif algorithm == 'max_fft':
pred_track = absmax(pred_track, axis=0)
pred_track = istft(pred_track, 1024, chunk_length)
elif algorithm == 'median_fft':
pred_track = np.median(pred_track, axis=0)
pred_track = istft(pred_track, 1024, chunk_length)
return pred_track
def ensemble_files(args):
parser = argparse.ArgumentParser()
parser.add_argument("--files", type=str, required=True, nargs='+', help="Path to all audio-files to ensemble")
parser.add_argument("--type", type=str, default='avg_wave', help="One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft")
parser.add_argument("--weights", type=float, nargs='+', help="Weights to create ensemble. Number of weights must be equal to number of files")
parser.add_argument("--output", default="res.wav", type=str, help="Path to wav file where ensemble result will be stored")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
print('Ensemble type: {}'.format(args.type))
print('Number of input files: {}'.format(len(args.files)))
if args.weights is not None:
weights = np.array(args.weights)
else:
weights = np.ones(len(args.files))
print('Weights: {}'.format(weights))
print('Output file: {}'.format(args.output))
durations = [librosa.get_duration(filename=f) for f in args.files]
if not all(d == durations[0] for d in durations):
raise ValueError("All files must have the same duration")
total_duration = durations[0]
sr = librosa.get_samplerate(args.files[0])
chunk_duration = 30 # 30-second chunks
overlap_duration = 0.1 # 100 ms overlap
chunk_samples = int(chunk_duration * sr)
overlap_samples = int(overlap_duration * sr)
step_samples = chunk_samples - overlap_samples # Step size reduced by overlap
total_samples = int(total_duration * sr)
# Align chunk length with hop_length
hop_length = 1024
chunk_samples = ((chunk_samples + hop_length - 1) // hop_length) * hop_length
step_samples = chunk_samples - overlap_samples
prev_chunk_tail = None # To store the tail of the previous chunk for crossfading
with sf.SoundFile(args.output, 'w', sr, channels=2, subtype='FLOAT') as outfile:
for start in range(0, total_samples, step_samples):
end = min(start + chunk_samples, total_samples)
chunk_length = end - start
data = []
for f in args.files:
if not os.path.isfile(f):
print('Error. Can\'t find file: {}. Check paths.'.format(f))
exit()
# print(f'Reading chunk from file: {f} (start: {start/sr}s, duration: {(end-start)/sr}s)')
wav, _ = librosa.load(f, sr=sr, mono=False, offset=start/sr, duration=(end-start)/sr)
data.append(wav)
res = average_waveforms(data, weights, args.type, chunk_length)
res = res.astype(np.float32)
#print(f'Chunk result shape: {res.shape}')
# Crossfade with the previous chunk's tail
if start > 0 and prev_chunk_tail is not None:
new_data = res[:, :overlap_samples]
fade_out = np.linspace(1, 0, overlap_samples)
fade_in = np.linspace(0, 1, overlap_samples)
blended = prev_chunk_tail * fade_out + new_data * fade_in
outfile.write(blended.T)
outfile.write(res[:, overlap_samples:].T)
else:
outfile.write(res.T)
# Store the tail of the current chunk for the next iteration
if chunk_length > overlap_samples:
prev_chunk_tail = res[:, -overlap_samples:]
else:
prev_chunk_tail = res[:, :]
del data
del res
gc.collect()
print(f'Ensemble completed. Output saved to: {args.output}')
if __name__ == "__main__":
ensemble_files(None)
|