Spaces:
Running
on
Zero
Running
on
Zero
Update ensemble.py
Browse files- ensemble.py +65 -74
ensemble.py
CHANGED
@@ -6,23 +6,26 @@ import librosa
|
|
6 |
import soundfile as sf
|
7 |
import numpy as np
|
8 |
import argparse
|
9 |
-
import
|
10 |
import gc
|
11 |
|
|
|
|
|
|
|
12 |
def stft(wave, nfft, hl):
|
13 |
-
wave_left = np.
|
14 |
-
wave_right = np.
|
15 |
spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl)
|
16 |
spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl)
|
17 |
-
spec = np.
|
18 |
return spec
|
19 |
|
20 |
def istft(spec, hl, length):
|
21 |
-
spec_left = np.
|
22 |
-
spec_right = np.
|
23 |
wave_left = librosa.istft(spec_left, hop_length=hl, length=length)
|
24 |
wave_right = librosa.istft(spec_right, hop_length=hl, length=length)
|
25 |
-
wave = np.
|
26 |
return wave
|
27 |
|
28 |
def absmax(a, *, axis):
|
@@ -72,7 +75,7 @@ def average_waveforms(pred_track, weights, algorithm):
|
|
72 |
:param algorithm: One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft
|
73 |
:return: averaged waveform in shape (channels, length)
|
74 |
"""
|
75 |
-
pred_track = np.
|
76 |
final_length = pred_track.shape[-1]
|
77 |
|
78 |
mod_track = []
|
@@ -83,103 +86,91 @@ def average_waveforms(pred_track, weights, algorithm):
|
|
83 |
mod_track.append(pred_track[i])
|
84 |
elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']:
|
85 |
spec = stft(pred_track[i], nfft=2048, hl=1024)
|
86 |
-
if algorithm
|
87 |
mod_track.append(spec * weights[i])
|
88 |
else:
|
89 |
mod_track.append(spec)
|
90 |
del spec
|
91 |
gc.collect()
|
92 |
-
|
93 |
|
94 |
-
if algorithm
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
pred_track = np.median(pred_track, axis=0)
|
115 |
-
pred_track = istft(pred_track, 1024, final_length)
|
116 |
|
117 |
gc.collect()
|
118 |
-
return
|
119 |
|
120 |
def ensemble_files(args):
|
121 |
-
parser = argparse.ArgumentParser()
|
122 |
-
parser.add_argument(
|
123 |
-
parser.add_argument(
|
124 |
-
parser.add_argument(
|
125 |
-
parser.add_argument(
|
126 |
|
127 |
-
|
128 |
-
args = parser.parse_args(args) if isinstance(args, list) else parser.parse_args()
|
129 |
-
except SystemExit:
|
130 |
-
print("Error: Invalid command-line arguments. Check --files, --type, --weights, and --output.")
|
131 |
-
return None
|
132 |
-
|
133 |
-
print('Ensemble type: {}'.format(args.type))
|
134 |
-
print('Number of input files: {}'.format(len(args.files)))
|
135 |
-
if args.weights is not None:
|
136 |
-
weights = args.weights
|
137 |
-
if len(weights) != len(args.files):
|
138 |
-
print('Error: Number of weights must match number of audio files.')
|
139 |
-
return None
|
140 |
-
else:
|
141 |
-
weights = np.ones(len(args.files))
|
142 |
-
print('Weights: {}'.format(weights))
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
149 |
|
150 |
data = []
|
151 |
sr = None
|
152 |
for f in args.files:
|
153 |
if not os.path.isfile(f):
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
try:
|
158 |
wav, curr_sr = librosa.load(f, sr=None, mono=False)
|
159 |
if sr is None:
|
160 |
sr = curr_sr
|
161 |
elif sr != curr_sr:
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
data.append(wav)
|
166 |
del wav
|
167 |
gc.collect()
|
168 |
except Exception as e:
|
169 |
-
|
170 |
-
|
171 |
|
172 |
try:
|
173 |
-
data = np.
|
174 |
res = average_waveforms(data, weights, args.type)
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
except Exception as e:
|
179 |
-
|
180 |
-
|
181 |
finally:
|
182 |
gc.collect()
|
183 |
|
184 |
if __name__ == "__main__":
|
185 |
-
ensemble_files(
|
|
|
6 |
import soundfile as sf
|
7 |
import numpy as np
|
8 |
import argparse
|
9 |
+
import logging
|
10 |
import gc
|
11 |
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
def stft(wave, nfft, hl):
|
16 |
+
wave_left = np.ascontiguousarray(wave[0])
|
17 |
+
wave_right = np.ascontiguousarray(wave[1])
|
18 |
spec_left = librosa.stft(wave_left, n_fft=nfft, hop_length=hl)
|
19 |
spec_right = librosa.stft(wave_right, n_fft=nfft, hop_length=hl)
|
20 |
+
spec = np.stack([spec_left, spec_right])
|
21 |
return spec
|
22 |
|
23 |
def istft(spec, hl, length):
|
24 |
+
spec_left = np.ascontiguousarray(spec[0])
|
25 |
+
spec_right = np.ascontiguousarray(spec[1])
|
26 |
wave_left = librosa.istft(spec_left, hop_length=hl, length=length)
|
27 |
wave_right = librosa.istft(spec_right, hop_length=hl, length=length)
|
28 |
+
wave = np.stack([wave_left, wave_right])
|
29 |
return wave
|
30 |
|
31 |
def absmax(a, *, axis):
|
|
|
75 |
:param algorithm: One of avg_wave, median_wave, min_wave, max_wave, avg_fft, median_fft, min_fft, max_fft
|
76 |
:return: averaged waveform in shape (channels, length)
|
77 |
"""
|
78 |
+
pred_track = np.asarray(pred_track) # NumPy 2.0+ compatibility
|
79 |
final_length = pred_track.shape[-1]
|
80 |
|
81 |
mod_track = []
|
|
|
86 |
mod_track.append(pred_track[i])
|
87 |
elif algorithm in ['avg_fft', 'min_fft', 'max_fft', 'median_fft']:
|
88 |
spec = stft(pred_track[i], nfft=2048, hl=1024)
|
89 |
+
if algorithm == 'avg_fft':
|
90 |
mod_track.append(spec * weights[i])
|
91 |
else:
|
92 |
mod_track.append(spec)
|
93 |
del spec
|
94 |
gc.collect()
|
95 |
+
mod_track = np.asarray(mod_track) # NumPy 2.0+ compatibility
|
96 |
|
97 |
+
if algorithm == 'avg_wave':
|
98 |
+
result = mod_track.sum(axis=0) / np.sum(weights)
|
99 |
+
elif algorithm == 'median_wave':
|
100 |
+
result = np.median(mod_track, axis=0)
|
101 |
+
elif algorithm == 'min_wave':
|
102 |
+
result = lambda_min(mod_track, axis=0, key=np.abs)
|
103 |
+
elif algorithm == 'max_wave':
|
104 |
+
result = lambda_max(mod_track, axis=0, key=np.abs)
|
105 |
+
elif algorithm == 'avg_fft':
|
106 |
+
result = mod_track.sum(axis=0) / np.sum(weights)
|
107 |
+
result = istft(result, 1024, final_length)
|
108 |
+
elif algorithm == 'min_fft':
|
109 |
+
result = lambda_min(mod_track, axis=0, key=np.abs)
|
110 |
+
result = istft(result, 1024, final_length)
|
111 |
+
elif algorithm == 'max_fft':
|
112 |
+
result = absmax(mod_track, axis=0)
|
113 |
+
result = istft(result, 1024, final_length)
|
114 |
+
elif algorithm == 'median_fft':
|
115 |
+
result = np.median(mod_track, axis=0)
|
116 |
+
result = istft(result, 1024, final_length)
|
|
|
|
|
117 |
|
118 |
gc.collect()
|
119 |
+
return result
|
120 |
|
121 |
def ensemble_files(args):
|
122 |
+
parser = argparse.ArgumentParser(description="Ensemble audio files")
|
123 |
+
parser.add_argument('--files', nargs='+', required=True, help="Input audio files")
|
124 |
+
parser.add_argument('--type', required=True, choices=['avg_wave', 'median_wave', 'max_wave', 'min_wave', 'avg_fft', 'median_fft', 'max_fft', 'min_fft'], help="Ensemble type")
|
125 |
+
parser.add_argument('--weights', nargs='+', type=float, default=None, help="Weights for each file")
|
126 |
+
parser.add_argument('--output', required=True, help="Output file path")
|
127 |
|
128 |
+
args = parser.parse_args(args) if isinstance(args, list) else args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
logger.info(f"Ensemble type: {args.type}")
|
131 |
+
logger.info(f"Number of input files: {len(args.files)}")
|
132 |
+
weights = args.weights if args.weights else [1.0] * len(args.files)
|
133 |
+
if len(weights) != len(args.files):
|
134 |
+
logger.error("Number of weights must match number of audio files")
|
135 |
+
raise ValueError("Number of weights must match number of audio files")
|
136 |
+
logger.info(f"Weights: {weights}")
|
137 |
+
logger.info(f"Output file: {args.output}")
|
138 |
|
139 |
data = []
|
140 |
sr = None
|
141 |
for f in args.files:
|
142 |
if not os.path.isfile(f):
|
143 |
+
logger.error(f"Cannot find file: {f}")
|
144 |
+
raise FileNotFoundError(f"Cannot find file: {f}")
|
145 |
+
logger.info(f"Reading file: {f}")
|
146 |
try:
|
147 |
wav, curr_sr = librosa.load(f, sr=None, mono=False)
|
148 |
if sr is None:
|
149 |
sr = curr_sr
|
150 |
elif sr != curr_sr:
|
151 |
+
logger.error("All audio files must have the same sample rate")
|
152 |
+
raise ValueError("All audio files must have the same sample rate")
|
153 |
+
logger.info(f"Waveform shape: {wav.shape} sample rate: {sr}")
|
154 |
data.append(wav)
|
155 |
del wav
|
156 |
gc.collect()
|
157 |
except Exception as e:
|
158 |
+
logger.error(f"Error reading audio file {f}: {str(e)}")
|
159 |
+
raise RuntimeError(f"Error reading audio file {f}: {str(e)}")
|
160 |
|
161 |
try:
|
162 |
+
data = np.asarray(data) # NumPy 2.0+ compatibility
|
163 |
res = average_waveforms(data, weights, args.type)
|
164 |
+
logger.info(f"Result shape: {res.shape}")
|
165 |
+
os.makedirs(os.path.dirname(args.output), exist_ok=True)
|
166 |
+
sf.write(args.output, res.T, sr, 'FLOAT')
|
167 |
+
logger.info(f"Output written to: {args.output}")
|
168 |
+
return args.output
|
169 |
except Exception as e:
|
170 |
+
logger.error(f"Error during ensemble processing: {str(e)}")
|
171 |
+
raise RuntimeError(f"Error during ensemble processing: {str(e)}")
|
172 |
finally:
|
173 |
gc.collect()
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
+
ensemble_files(sys.argv[1:])
|