File size: 4,246 Bytes
dfe2f93
 
 
 
 
 
 
 
f056e15
 
 
 
 
 
 
 
 
 
 
682d5a5
f056e15
 
 
 
 
 
dfe2f93
 
5c5c1de
 
 
 
dfe2f93
5c5c1de
dfe2f93
 
5c5c1de
 
f056e15
 
5c5c1de
f056e15
dfe2f93
f056e15
 
 
 
 
dfe2f93
f056e15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe2f93
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import cv2
import torch
import argparse
from torch.nn import functional as F
import warnings

def main():
        
    warnings.filterwarnings("ignore")
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    torch.set_grad_enabled(False)
    if torch.cuda.is_available():
        torch.backends.cudnn.enabled = True
        torch.backends.cudnn.benchmark = True
    
    parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
    parser.add_argument('--img', dest='img', nargs=2, required=True)
    parser.add_argument('--exp', default=4, type=int)
    parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
    parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
    parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
    parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
    
    args = parser.parse_args()
    
    try:
        from train_log.RIFE_HDv3 import Model
        model = Model()
        model.load_model(args.modelDir, -1)
        print("Loaded RIFE_HDv3 model.")
    except:
        from train_log.IFNet_HDv3 import Model
        model = Model()
        model.load_model(args.modelDir, -1)
        print("Loaded IFNet_HDv3 model.")
    
    model.eval()
    model.device()

    
    if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
        img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
        img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
        img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
        img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
    
    else:
        img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
        img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
        img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
        img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
    
    n, c, h, w = img0.shape
    ph = ((h - 1) // 32 + 1) * 32
    pw = ((w - 1) // 32 + 1) * 32
    padding = (0, pw - w, 0, ph - h)
    img0 = F.pad(img0, padding)
    img1 = F.pad(img1, padding)
    
    
    if args.ratio:
        img_list = [img0]
        img0_ratio = 0.0
        img1_ratio = 1.0
        if args.ratio <= img0_ratio + args.rthreshold / 2:
            middle = img0
        elif args.ratio >= img1_ratio - args.rthreshold / 2:
            middle = img1
        else:
            tmp_img0 = img0
            tmp_img1 = img1
            for inference_cycle in range(args.rmaxcycles):
                middle = model.inference(tmp_img0, tmp_img1)
                middle_ratio = ( img0_ratio + img1_ratio ) / 2
                if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
                    break
                if args.ratio > middle_ratio:
                    tmp_img0 = middle
                    img0_ratio = middle_ratio
                else:
                    tmp_img1 = middle
                    img1_ratio = middle_ratio
        img_list.append(middle)
        img_list.append(img1)
    else:
        img_list = [img0, img1]
        for i in range(args.exp):
            tmp = []
            for j in range(len(img_list) - 1):
                mid = model.inference(img_list[j], img_list[j + 1])
                tmp.append(img_list[j])
                tmp.append(mid)
            tmp.append(img1)
            img_list = tmp
    
    if not os.path.exists('output'):
        os.mkdir('output')
    for i in range(len(img_list)):
        if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
            cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
        else:
            cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])

if __name__ == "__main__":
    main()