Spaces:
Running
Running
Update inference_img.py
Browse files- inference_img.py +119 -111
inference_img.py
CHANGED
|
@@ -1,111 +1,119 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import cv2
|
| 3 |
-
import torch
|
| 4 |
-
import argparse
|
| 5 |
-
from torch.nn import functional as F
|
| 6 |
-
import warnings
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
parser
|
| 20 |
-
parser.add_argument('--
|
| 21 |
-
parser.add_argument('--
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
model
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
model.
|
| 48 |
-
model
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
img0 =
|
| 58 |
-
img1 =
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import argparse
|
| 5 |
+
from torch.nn import functional as F
|
| 6 |
+
import warnings
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def main():
|
| 10 |
+
|
| 11 |
+
warnings.filterwarnings("ignore")
|
| 12 |
+
|
| 13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
torch.set_grad_enabled(False)
|
| 15 |
+
if torch.cuda.is_available():
|
| 16 |
+
torch.backends.cudnn.enabled = True
|
| 17 |
+
torch.backends.cudnn.benchmark = True
|
| 18 |
+
|
| 19 |
+
parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
|
| 20 |
+
parser.add_argument('--img', dest='img', nargs=2, required=True)
|
| 21 |
+
parser.add_argument('--exp', default=4, type=int)
|
| 22 |
+
parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
|
| 23 |
+
parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
|
| 24 |
+
parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
|
| 25 |
+
parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
|
| 26 |
+
|
| 27 |
+
args = parser.parse_args()
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
try:
|
| 31 |
+
try:
|
| 32 |
+
from model.RIFE_HDv2 import Model
|
| 33 |
+
model = Model()
|
| 34 |
+
model.load_model(args.modelDir, -1)
|
| 35 |
+
print("Loaded v2.x HD model.")
|
| 36 |
+
except:
|
| 37 |
+
from train_log.RIFE_HDv3 import Model
|
| 38 |
+
model = Model()
|
| 39 |
+
model.load_model(args.modelDir, -1)
|
| 40 |
+
print("Loaded v3.x HD model.")
|
| 41 |
+
except:
|
| 42 |
+
from model.RIFE_HD import Model
|
| 43 |
+
model = Model()
|
| 44 |
+
model.load_model(args.modelDir, -1)
|
| 45 |
+
print("Loaded v1.x HD model")
|
| 46 |
+
except:
|
| 47 |
+
from model.RIFE import Model
|
| 48 |
+
model = Model()
|
| 49 |
+
model.load_model(args.modelDir, -1)
|
| 50 |
+
print("Loaded ArXiv-RIFE model")
|
| 51 |
+
model.eval()
|
| 52 |
+
model.device()
|
| 53 |
+
|
| 54 |
+
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
| 55 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
| 56 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
|
| 57 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
| 58 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
|
| 59 |
+
|
| 60 |
+
else:
|
| 61 |
+
img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
|
| 62 |
+
img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
|
| 63 |
+
img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
| 64 |
+
img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
|
| 65 |
+
|
| 66 |
+
n, c, h, w = img0.shape
|
| 67 |
+
ph = ((h - 1) // 32 + 1) * 32
|
| 68 |
+
pw = ((w - 1) // 32 + 1) * 32
|
| 69 |
+
padding = (0, pw - w, 0, ph - h)
|
| 70 |
+
img0 = F.pad(img0, padding)
|
| 71 |
+
img1 = F.pad(img1, padding)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
if args.ratio:
|
| 75 |
+
img_list = [img0]
|
| 76 |
+
img0_ratio = 0.0
|
| 77 |
+
img1_ratio = 1.0
|
| 78 |
+
if args.ratio <= img0_ratio + args.rthreshold / 2:
|
| 79 |
+
middle = img0
|
| 80 |
+
elif args.ratio >= img1_ratio - args.rthreshold / 2:
|
| 81 |
+
middle = img1
|
| 82 |
+
else:
|
| 83 |
+
tmp_img0 = img0
|
| 84 |
+
tmp_img1 = img1
|
| 85 |
+
for inference_cycle in range(args.rmaxcycles):
|
| 86 |
+
middle = model.inference(tmp_img0, tmp_img1)
|
| 87 |
+
middle_ratio = ( img0_ratio + img1_ratio ) / 2
|
| 88 |
+
if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
|
| 89 |
+
break
|
| 90 |
+
if args.ratio > middle_ratio:
|
| 91 |
+
tmp_img0 = middle
|
| 92 |
+
img0_ratio = middle_ratio
|
| 93 |
+
else:
|
| 94 |
+
tmp_img1 = middle
|
| 95 |
+
img1_ratio = middle_ratio
|
| 96 |
+
img_list.append(middle)
|
| 97 |
+
img_list.append(img1)
|
| 98 |
+
else:
|
| 99 |
+
img_list = [img0, img1]
|
| 100 |
+
for i in range(args.exp):
|
| 101 |
+
tmp = []
|
| 102 |
+
for j in range(len(img_list) - 1):
|
| 103 |
+
mid = model.inference(img_list[j], img_list[j + 1])
|
| 104 |
+
tmp.append(img_list[j])
|
| 105 |
+
tmp.append(mid)
|
| 106 |
+
tmp.append(img1)
|
| 107 |
+
img_list = tmp
|
| 108 |
+
|
| 109 |
+
if not os.path.exists('output'):
|
| 110 |
+
os.mkdir('output')
|
| 111 |
+
for i in range(len(img_list)):
|
| 112 |
+
if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
|
| 113 |
+
cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
|
| 114 |
+
else:
|
| 115 |
+
cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
main()
|