File size: 10,285 Bytes
06d7801
227bc73
 
0e0805e
227bc73
 
 
a5a4d0b
0e0805e
06d7801
c0db3ab
06d7801
f17874c
a5a4d0b
a40e1b1
 
06d7801
227bc73
06d7801
827103d
c0db3ab
1587c1a
827103d
 
 
 
 
 
 
 
ad2ae6c
4d4355a
0e0805e
4d4355a
 
 
 
 
 
 
06d7801
4d4355a
 
 
58cc987
4d4355a
 
 
 
 
 
06d7801
4d4355a
 
 
 
 
 
b5ba988
4d4355a
 
 
 
84c1e9b
4d4355a
 
84c1e9b
4d4355a
84c1e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4355a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0db3ab
4d4355a
c0db3ab
4d4355a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84c1e9b
4d4355a
84c1e9b
 
b5ba988
0e0805e
227bc73
c0db3ab
58cc987
227bc73
0e0805e
227bc73
c0db3ab
4d4355a
 
84c1e9b
 
4d4355a
 
 
84c1e9b
4d4355a
 
84c1e9b
 
4d4355a
c0db3ab
4d4355a
 
f7c613a
d5e23e9
f7c613a
84c1e9b
4d4355a
84c1e9b
4d4355a
 
 
 
 
d5e23e9
4d4355a
 
84c1e9b
4d4355a
 
b5ba988
 
4d4355a
 
 
 
 
 
 
 
84c1e9b
4d4355a
6ed04ac
4d4355a
 
4d0497a
f7c613a
 
d5e23e9
f7c613a
 
c459371
84c1e9b
227bc73
e271092
227bc73
91ca5cc
0e0805e
c0db3ab
227bc73
c0db3ab
 
4d4355a
 
 
 
 
 
 
 
 
c0db3ab
 
 
 
 
 
 
227bc73
 
 
0e0805e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# app.py
import spaces
import gradio as gr
import argparse
import sys
import os
import random
import subprocess
from PIL import Image
import numpy as np

subprocess.run(['sh', './sky.sh'])
sys.path.append("./SkyReels-V1")

from skyreelsinfer import TaskType
from skyreelsinfer.offload import OffloadConfig
from skyreelsinfer.skyreels_video_infer import SkyReelsVideoSingleGpuInfer
from diffusers.utils import export_to_video

import torch
import logging
from collections import OrderedDict  # Import OrderedDict here

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.set_float32_matmul_precision("highest")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

logger = logging.getLogger(__name__)
# --- Dummy Classes (Keep for standalone execution) ---
class OffloadConfig:
    def __init__(self, high_cpu_memory=False, parameters_level=False, compiler_transformer=False, compiler_cache=""):
        self.high_cpu_memory = high_cpu_memory
        self.parameters_level = parameters_level
        self.compiler_transformer = compiler_transformer
        self.compiler_cache = compiler_cache

class TaskType: #Keep here for infer
    T2V = 0
    I2V = 1

class LlamaModel:
    @staticmethod
    def from_pretrained(*args, **kwargs):
        return LlamaModel()
    def to(self, device):
        return self

class HunyuanVideoTransformer3DModel:
    @staticmethod
    def from_pretrained(*args, **kwargs):
        return HunyuanVideoTransformer3DModel()
    def to(self, device):
        return self

class SkyreelsVideoPipeline:
    @staticmethod
    def from_pretrained(*args, **kwargs):
        return SkyreelsVideoPipeline()

    def to(self, device):
        return self

    def __call__(self, *args, **kwargs):
        num_frames = kwargs.get("num_frames", 16)  # Default to 16 frames
        height = kwargs.get("height", 512)
        width = kwargs.get("width", 512)

        if "image" in kwargs:  # I2V
            image = kwargs["image"]
            # Convert PIL Image to PyTorch tensor (and normalize to [0, 1])
            image_tensor = torch.from_numpy(np.array(image)).float() / 255.0
            image_tensor = image_tensor.permute(2, 0, 1).unsqueeze(0)  # (H, W, C) -> (1, C, H, W)

             # Create video by repeating the image and adding noise
            frames = image_tensor.repeat(1, 1, num_frames, 1, 1)  # (1, C, T, H, W)
            frames = frames + torch.randn_like(frames) * 0.05 # Add a little noise.

        else:  # T2V
            frames = torch.randn(1, 3, num_frames, height, width) # Use correct dims

        return type('obj', (object,), {'frames' : frames})() # No longer a list!

    def __init__(self):
      super().__init__()
      self._modules = OrderedDict()
      self.vae = self.VAE()
      self._modules["vae"] = self.vae

    def named_children(self):
      return self._modules.items()
    class VAE:
        def enable_tiling(self):
            pass

def quantize_(*args, **kwargs):
    return

def float8_weight_only():
    return

# --- End Dummy Classes ---
class SkyReelsVideoSingleGpuInfer:
    def _load_model(self, model_id: str, base_model_id: str = "hunyuanvideo-community/HunyuanVideo", quant_model: bool = True):
        logger.info(f"load model model_id:{model_id} quan_model:{quant_model}")
        text_encoder = LlamaModel.from_pretrained(
            base_model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16
        ).to("cpu")
        transformer = HunyuanVideoTransformer3DModel.from_pretrained(
            model_id, torch_dtype=torch.bfloat16, device="cpu"
        ).to("cpu")

        if quant_model:
            quantize_(text_encoder, float8_weight_only())
            text_encoder.to("cpu")
            torch.cuda.empty_cache()
            quantize_(transformer, float8_weight_only())
            transformer.to("cpu")
            torch.cuda.empty_cache()

        pipe = SkyreelsVideoPipeline.from_pretrained(
            base_model_id, transformer=transformer, text_encoder=text_encoder, torch_dtype=torch.bfloat16
        ).to("cpu")
        pipe.vae.enable_tiling()
        torch.cuda.empty_cache()
        return pipe

    def __init__(
        self,
        task_type: TaskType,
        model_id: str,
        quant_model: bool = True,
        is_offload: bool = True,
        offload_config: OffloadConfig = OffloadConfig(),
        enable_cfg_parallel: bool = True,
    ):
        self.task_type = task_type
        self.model_id = model_id
        self.quant_model = quant_model
        self.is_offload = is_offload
        self.offload_config = offload_config
        self.enable_cfg_parallel = enable_cfg_parallel
        self.pipe = None
        self.is_initialized = False
        self.gpu_device = None

    def initialize(self):
        """Initializes the model and moves it to the GPU."""
        if self.is_initialized:
            return

        if not torch.cuda.is_available():
            raise RuntimeError("CUDA is not available. Cannot initialize model.")

        self.gpu_device = "cuda:0"
        self.pipe = self._load_model(model_id=self.model_id, quant_model=self.quant_model)

        if self.is_offload:
          pass
        else:
            self.pipe.to(self.gpu_device)

        if self.offload_config.compiler_transformer:
            torch._dynamo.config.suppress_errors = True
            os.environ["TORCHINDUCTOR_FX_GRAPH_CACHE"] = "1"
            os.environ["TORCHINDUCTOR_CACHE_DIR"] = f"{self.offload_config.compiler_cache}"
            self.pipe.transformer = torch.compile(
                self.pipe.transformer, mode="max-autotune-no-cudagraphs", dynamic=True
            )
            if self.offload_config.compiler_transformer:
                self.warm_up()
        self.is_initialized = True

    def warm_up(self):
      if not self.is_initialized:
          raise RuntimeError("Model must be initialized before warm-up.")

      init_kwargs = {
            "prompt": "A woman is dancing in a room",
            "height": 544,
            "width": 960,
            "guidance_scale": 6,
            "num_inference_steps": 1,
            "negative_prompt": "bad quality",
            "num_frames": 16,
            "generator": torch.Generator(self.gpu_device).manual_seed(42),
            "embedded_guidance_scale": 1.0,
        }
      if self.task_type == TaskType.I2V:
        init_kwargs["image"] = Image.new("RGB",(544,960), color="black")
      self.pipe(**init_kwargs)
      logger.info("Warm-up complete.")

    def infer(self, **kwargs):
        """Handles inference requests."""
        if not self.is_initialized:
          self.initialize()
        if "seed" in kwargs:
            kwargs["generator"] = torch.Generator(self.gpu_device).manual_seed(kwargs["seed"])
            del kwargs["seed"]
        assert (self.task_type == TaskType.I2V and "image" in kwargs) or self.task_type == TaskType.T2V
        result = self.pipe(**kwargs).frames # Return the tensor directly
        return result

_predictor = None

@spaces.GPU(duration=90)
def generate_video(prompt, seed, image=None):
    global _predictor

    if seed == -1:
        random.seed()
        seed = int(random.randrange(4294967294))

    if image is None:
        task_type = TaskType.T2V
        model_id = "Skywork/SkyReels-V1-Hunyuan-T2V"
        kwargs = {
            "prompt": prompt,
            "height": 512,
            "width": 512,
            "num_frames": 16,
            "num_inference_steps": 30,
            "seed": seed,
            "guidance_scale": 7.5,
            "negative_prompt": "bad quality, worst quality",
        }
    else:
        task_type = TaskType.I2V
        model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
        seed = 43
        #generator = torch.Generator(device="cuda").manual_seed(seed)

        kwargs = {
            "prompt": prompt,
            "image": Image.open(image),
            "height": 512,
            "width": 512,
            "num_frames": 97,
            "num_inference_steps": 30,
            "seed": seed,
            #"generator": generator,
            "guidance_scale": 6.0,
            "embedded_guidance_scale": 1.0,
            "negative_prompt": "Aerial view, low quality, bad hands",
            "cfg_for": False,
        }

    if _predictor is None:
        _predictor = SkyReelsVideoSingleGpuInfer(
            task_type=task_type,
            model_id=model_id,
            quant_model=True,
            is_offload=True,
            offload_config=OffloadConfig(
                high_cpu_memory=True,
                parameters_level=True,
                compiler_transformer=False,
            ),
        )
        _predictor.initialize()
        logger.info("Predictor initialized")
    out_samples = []
    with torch.no_grad():
        output = _predictor.infer(**kwargs)
        #out_samples.extend(output.frames[0])
    #output = (output.cpu().numpy() * 255).astype(np.uint8)
    #output = output.transpose(0, 2, 3, 4, 1)

    save_dir = f"./result"
    os.makedirs(save_dir, exist_ok=True)
    video_out_file = f"{save_dir}/{seed}.mp4"
    print(f"generate video, local path: {video_out_file}")
    export_to_video(output, video_out_file, fps=24)
    return video_out_file, kwargs

def create_gradio_interface():
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                image = gr.Image(label="Upload Image", type="filepath")
                prompt = gr.Textbox(label="Input Prompt")
                seed = gr.Number(label="Random Seed", value=-1)
            with gr.Column():
                submit_button = gr.Button("Generate Video")
                output_video = gr.Video(label="Generated Video")
                output_params = gr.Textbox(label="Output Parameters")

        submit_button.click(
            fn=generate_video,
            inputs=[prompt, seed, image],
            outputs=[output_video, output_params],
        )
    return demo


if __name__ == "__main__":
    demo = create_gradio_interface()
    demo.queue().launch()