Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -232,6 +232,9 @@ def generate_video(prompt, seed, image=None):
|
|
| 232 |
else:
|
| 233 |
task_type = TaskType.I2V
|
| 234 |
model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
|
|
|
|
|
|
|
|
|
|
| 235 |
kwargs = {
|
| 236 |
"prompt": prompt,
|
| 237 |
"image": Image.open(image),
|
|
@@ -240,6 +243,7 @@ def generate_video(prompt, seed, image=None):
|
|
| 240 |
"num_frames": 97,
|
| 241 |
"num_inference_steps": 30,
|
| 242 |
"seed": seed,
|
|
|
|
| 243 |
"guidance_scale": 6.0,
|
| 244 |
"embedded_guidance_scale": 1.0,
|
| 245 |
"negative_prompt": "Aerial view, low quality, bad hands",
|
|
@@ -257,20 +261,20 @@ def generate_video(prompt, seed, image=None):
|
|
| 257 |
parameters_level=True,
|
| 258 |
compiler_transformer=False,
|
| 259 |
),
|
| 260 |
-
)
|
| 261 |
_predictor.initialize()
|
| 262 |
logger.info("Predictor initialized")
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
output = (output.cpu().numpy() * 255).astype(np.uint8)
|
| 267 |
-
output = output.transpose(0, 2, 3, 4, 1)
|
| 268 |
|
| 269 |
save_dir = f"./result"
|
| 270 |
os.makedirs(save_dir, exist_ok=True)
|
| 271 |
video_out_file = f"{save_dir}/{seed}.mp4"
|
| 272 |
print(f"generate video, local path: {video_out_file}")
|
| 273 |
-
export_to_video(
|
| 274 |
return video_out_file, kwargs
|
| 275 |
|
| 276 |
def create_gradio_interface():
|
|
|
|
| 232 |
else:
|
| 233 |
task_type = TaskType.I2V
|
| 234 |
model_id = "Skywork/SkyReels-V1-Hunyuan-I2V"
|
| 235 |
+
seed = 43
|
| 236 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 237 |
+
|
| 238 |
kwargs = {
|
| 239 |
"prompt": prompt,
|
| 240 |
"image": Image.open(image),
|
|
|
|
| 243 |
"num_frames": 97,
|
| 244 |
"num_inference_steps": 30,
|
| 245 |
"seed": seed,
|
| 246 |
+
"generator": generator,
|
| 247 |
"guidance_scale": 6.0,
|
| 248 |
"embedded_guidance_scale": 1.0,
|
| 249 |
"negative_prompt": "Aerial view, low quality, bad hands",
|
|
|
|
| 261 |
parameters_level=True,
|
| 262 |
compiler_transformer=False,
|
| 263 |
),
|
| 264 |
+
).to("cuda")
|
| 265 |
_predictor.initialize()
|
| 266 |
logger.info("Predictor initialized")
|
| 267 |
+
with torch.no_grad():
|
| 268 |
+
output = _predictor.infer(**kwargs)
|
| 269 |
+
out_samples.extend(output.frames[0])
|
| 270 |
+
#output = (output.cpu().numpy() * 255).astype(np.uint8)
|
| 271 |
+
#output = output.transpose(0, 2, 3, 4, 1)
|
| 272 |
|
| 273 |
save_dir = f"./result"
|
| 274 |
os.makedirs(save_dir, exist_ok=True)
|
| 275 |
video_out_file = f"{save_dir}/{seed}.mp4"
|
| 276 |
print(f"generate video, local path: {video_out_file}")
|
| 277 |
+
export_to_video(out_samples, video_out_file, fps=24)
|
| 278 |
return video_out_file, kwargs
|
| 279 |
|
| 280 |
def create_gradio_interface():
|