File size: 2,710 Bytes
cd64111 212cdca cd64111 212cdca e95c269 cd64111 212cdca cd64111 212cdca cd64111 212cdca cd64111 212cdca cd64111 212cdca cd64111 212cdca cd64111 212cdca cd64111 212cdca cd64111 212cdca cd64111 e95c269 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
library_name: transformers
tags:
- generated_from_trainer
- mnli
- text-classification
- bert
metrics:
- accuracy
- f1
model-index:
- name: mnli-finetuned-bert-base-cased
results:
- task:
type: text-classification
name: Natural Language Inference
dataset:
name: MultiNLI
type: nyu-mll/glue
metrics:
- name: Accuracy
type: accuracy
value: 0.6368
- name: F1
type: f1
value: 0.6358
license: mit
datasets:
- nyu-mll/glue
language:
- en
base_model:
- google-bert/bert-base-cased
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# soonbob/mnli-finetuned-bert-base-cased
MNLI λ°μ΄ν°μ
μ νμ΅μν¨ BERT
νμΈνλ μ°μ΅μ©μΌλ‘ λ§λ κ²μ
λλ€.
This is a BERT-based model fine-tuned on the [Multi-Genre Natural Language Inference (MultiNLI)](https://huggingface.co/datasets/glue/viewer/mnli) dataset for the task of **natural language inference** (NLI), using Hugging Face's `Trainer`.
It classifies a pair of sentences into one of the following classes:
- **entailment**
- **neutral**
- **contradiction**
## π§ Intended Use
This model can be used for:
- Evaluating whether one sentence logically follows from another
- Sentence-pair classification tasks
- Transfer learning for other NLI-style problems
It achieves the following results on the evaluation set:
- Loss: 0.8276
- Accuracy: 0.6368
- F1: 0.6358
## βοΈ Training Details
- Base model: [`bert-base-cased`](https://huggingface.co/bert-base-cased)
- Dataset: `nyu-mll/glue`, subset: `mnli`
- Epochs: 3
- Learning rate: 1e-3
- Optimizer: AdamW
- Scheduler: Linear
### ποΈ Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### ποΈ Training Logs
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8662 | 1.0 | 2455 | 0.8682 | 0.6033 | 0.5946 |
| 0.7964 | 2.0 | 4910 | 0.8449 | 0.6242 | 0.6242 |
| 0.7323 | 3.0 | 7365 | 0.8673 | 0.6237 | 0.6231 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1 |