soonbob/mnli-finetuned-bert-base-cased
MNLI λ°μ΄ν°μ μ νμ΅μν¨ BERT νμΈνλ μ°μ΅μ©μΌλ‘ λ§λ κ²μ λλ€.
This is a BERT-based model fine-tuned on the Multi-Genre Natural Language Inference (MultiNLI) dataset for the task of natural language inference (NLI), using Hugging Face's Trainer
.
It classifies a pair of sentences into one of the following classes:
- entailment
- neutral
- contradiction
π§ Intended Use
This model can be used for:
- Evaluating whether one sentence logically follows from another
- Sentence-pair classification tasks
- Transfer learning for other NLI-style problems
It achieves the following results on the evaluation set:
- Loss: 0.8276
- Accuracy: 0.6368
- F1: 0.6358
βοΈ Training Details
- Base model:
bert-base-cased
- Dataset:
nyu-mll/glue
, subset:mnli
- Epochs: 3
- Learning rate: 1e-3
- Optimizer: AdamW
- Scheduler: Linear
ποΈ Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
ποΈ Training Logs
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.8662 | 1.0 | 2455 | 0.8682 | 0.6033 | 0.5946 |
0.7964 | 2.0 | 4910 | 0.8449 | 0.6242 | 0.6242 |
0.7323 | 3.0 | 7365 | 0.8673 | 0.6237 | 0.6231 |
Framework versions
- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support
Model tree for soonbob/mnli-finetuned-bert-base-cased
Base model
google-bert/bert-base-casedDataset used to train soonbob/mnli-finetuned-bert-base-cased
Evaluation results
- Accuracy on MultiNLIself-reported0.637
- F1 on MultiNLIself-reported0.636