qwen3-32b-verilog-lora
This is a LoRA (Low-Rank Adaptation) adapter for Qwen/Qwen3-32B fine-tuned for Verilog code generation.
Training Details
- Base Model: Qwen/Qwen3-32B
- Training Algorithm: GRPO (Group Relative Policy Optimization)
- LoRA Rank: 32
- LoRA Alpha: 32
- Target Modules: o_proj, k_proj, up_proj, v_proj, gate_proj, q_proj, down_proj
- Task: Verilog hardware description language code generation
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Load base model and tokenizer
base_model_name = "Qwen/Qwen3-32B"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype="auto",
device_map="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "sonyashijin/qwen3-32b-verilog-lora")
# Generate Verilog code
prompt = "Create a 4-bit D flip-flop with enable and asynchronous reset:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=512, temperature=0.7)
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_code)
Training Configuration
- Data: Custom Verilog training dataset
- Batch Size: 64
- Learning Rate: 3e-5
- KL Loss Coefficient: 0.001
- Max Prompt Length: 1200 tokens
- Max Response Length: 1200 tokens
Files
adapter_config.json
: LoRA adapter configurationadapter_model.safetensors
: LoRA adapter weights (safe tensors format)
Citation
If you use this model, please cite the VERL (Verification Enhanced Reinforcement Learning) framework.
@misc{verl2024,
title={VERL: Verification Enhanced Reinforcement Learning for Verilog Code Generation},
author={Your Name},
year={2024},
url={https://huggingface.co/sonyashijin/qwen3-32b-verilog-lora}
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for sonyashijin/qwen3-32b-verilog-lora
Base model
Qwen/Qwen3-32B