metadata
base_model: perlthoughts/Chupacabra-7B-v2.01
license: apache-2.0
model-index:
- name: Chupacabra-7B-v2.01
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.86
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.12
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.5
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.51
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.67
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=perlthoughts/Chupacabra-7B-v2.01
name: Open LLM Leaderboard
tags:
- quantized
- 4-bit
- AWQ
- text-generation
- autotrain_compatible
- endpoints_compatible
- chatml
pipeline_tag: text-generation
inference: false
quantized_by: Suparious
perlthoughts/Chupacabra-7B-v2.01 AWQ
- Model creator: perlthoughts
- Original model: Chupacabra-7B-v2.01
Model Summary
Dare-ties merge method.
List of all models and merging path is coming soon.
Purpose
Merging the "thick"est model weights from mistral models using amazing training methods like direct preference optimization (dpo) and reinforced learning.
I have spent countless hours studying the latest research papers, attending conferences, and networking with experts in the field. I experimented with different algorithms, tactics, fine-tuned hyperparameters, optimizers, and optimized code until i achieved the best possible results.
Thank you openchat 3.5 for showing me the way.
Here is my contribution.
Prompt Template
Replace {system} with your system prompt, and {prompt} with your prompt instruction.
### System:
{system}
### User:
{prompt}
### Assistant: