Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/gpt-neo-1.3B
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 8e6de5875db72cf4_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/8e6de5875db72cf4_train_data.json
  type:
    field_input: ''
    field_instruction: caption_summary
    field_output: caption_writing
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: sn56a3/69d7935a-c195-48dd-a467-5c564e96e7d9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/8e6de5875db72cf4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
seed: 543633132
sequence_len: 512
shuffle: true
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: true
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: null
wandb_project: god
wandb_run: 39xa
wandb_runid: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

69d7935a-c195-48dd-a467-5c564e96e7d9

This model is a fine-tuned version of EleutherAI/gpt-neo-1.3B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 543633132
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
10.8438 0.0032 1 2.7064
10.6094 0.0158 5 2.6821
10.3086 0.0316 10 2.4936
9.5156 0.0475 15 2.3027
8.8164 0.0633 20 2.2405
9.7383 0.0791 25 2.2254

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for sn56a3/69d7935a-c195-48dd-a467-5c564e96e7d9

Adapter
(113)
this model