RITRIEVE ZH 微调:古诗 ↔ 现代语

This is a sentence-transformers model finetuned from richinfoai/ritrieve_zh_v1 on the json dataset. It maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: richinfoai/ritrieve_zh_v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1792 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: zh
  • License: mit

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1024, 'out_features': 1792, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '微信列表翻到底,能说真心话的居然只剩快递群。',
    '代情难重论,人事好乖移。',
    '时应记得长安事,曾向文场属思劳。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1792]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 225,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 14 tokens
    • mean: 26.51 tokens
    • max: 45 tokens
    • min: 12 tokens
    • mean: 15.23 tokens
    • max: 27 tokens
    • min: 12 tokens
    • mean: 15.34 tokens
    • max: 34 tokens
  • Samples:
    anchor positive negative
    整个人蜷在阳光里,连毛衣都晒出一股蓬松的香味。 箕踞拥裘坐,半身在日旸。 洛阳女儿对门居,才可容颜十五馀。
    好像所有的好事都约好了一样,今天一起找上门来。 临终极乐宝华迎,观音势至俱来至。 身没南朝宅已荒,邑人犹赏旧风光。
    大家都觉得她太娇气,只有你一直小心照顾着她。 弱质人皆弃,唯君手自栽。 秦筑长城城已摧,汉武北上单于台。
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Size: 25,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 12 tokens
    • mean: 26.86 tokens
    • max: 46 tokens
    • min: 12 tokens
    • mean: 15.31 tokens
    • max: 29 tokens
    • min: 12 tokens
    • mean: 15.3 tokens
    • max: 26 tokens
  • Samples:
    anchor positive negative
    看着街边那些孤零零的老人,真怕自己以后也变成那样。 垂白乱南翁,委身希北叟。 熏香荀令偏怜少,傅粉何郎不解愁。
    关了灯,屋里黑漆漆的,就听见外面秋虫和落叶在说话。 秋虫与秋叶,一夜隔窗闻。 未能穷意义,岂敢求瑕痕。
    虽然爷爷不在了,但他教我做人的道理永远记在心里。 惟孝虽遥,灵规不朽。 巧类鸳机织,光攒麝月团。
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 6
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 6
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.0284 50 4.4241 -
0.0569 100 3.4415 -
0.0853 150 2.6725 -
0.1138 200 2.4137 2.2686
0.1422 250 2.2701 -
0.1706 300 2.1523 -
0.1991 350 2.0805 -
0.2275 400 2.0513 1.9506
0.2560 450 2.0048 -
0.2844 500 1.9552 -
0.3129 550 1.8778 -
0.3413 600 1.8549 1.7630
0.3697 650 1.822 -
0.3982 700 1.8128 -
0.4266 750 1.7742 -
0.4551 800 1.7076 1.6331
0.4835 850 1.6919 -
0.5119 900 1.64 -
0.5404 950 1.6291 -
0.5688 1000 1.5881 1.5368
0.5973 1050 1.6018 -
0.6257 1100 1.5664 -
0.6542 1150 1.5545 -
0.6826 1200 1.5292 1.4532
0.7110 1250 1.5166 -
0.7395 1300 1.517 -
0.7679 1350 1.4639 -
0.7964 1400 1.4729 1.3687
0.8248 1450 1.4501 -
0.8532 1500 1.3932 -
0.8817 1550 1.4063 -
0.9101 1600 1.3825 1.3003
0.9386 1650 1.3647 -
0.9670 1700 1.3431 -
0.9954 1750 1.3417 -
1.0239 1800 1.0839 1.2431
1.0523 1850 1.0801 -
1.0808 1900 1.0577 -
1.1092 1950 1.0159 -
1.1377 2000 1.0239 1.2132
1.1661 2050 1.0335 -
1.1945 2100 1.0117 -
1.2230 2150 1.0343 -
1.2514 2200 1.0193 1.1808
1.2799 2250 1.0235 -
1.3083 2300 0.9949 -
1.3367 2350 1.0058 -
1.3652 2400 1.0039 1.1428
1.3936 2450 1.0164 -
1.4221 2500 0.9934 -
1.4505 2550 0.9777 -
1.4790 2600 0.9753 1.1101
1.5074 2650 0.9621 -
1.5358 2700 0.9756 -
1.5643 2750 0.9725 -
1.5927 2800 0.9649 1.0813
1.6212 2850 0.9652 -
1.6496 2900 0.9861 -
1.6780 2950 0.916 -
1.7065 3000 0.9417 1.0523
1.7349 3050 0.9599 -
1.7634 3100 0.9275 -
1.7918 3150 0.9247 -
1.8203 3200 0.9417 1.0306
1.8487 3250 0.9275 -
1.8771 3300 0.9431 -
1.9056 3350 0.9147 -
1.9340 3400 0.8957 1.0051
1.9625 3450 0.9169 -
1.9909 3500 0.9079 -
2.0193 3550 0.7057 -
2.0478 3600 0.6037 0.9944
2.0762 3650 0.5888 -
2.1047 3700 0.6134 -
2.1331 3750 0.6209 -
2.1615 3800 0.6163 0.9836
2.1900 3850 0.6271 -
2.2184 3900 0.629 -
2.2469 3950 0.6041 -
2.2753 4000 0.622 0.9792
2.3038 4050 0.6175 -
2.3322 4100 0.627 -
2.3606 4150 0.6339 -
2.3891 4200 0.6325 0.9643
2.4175 4250 0.6044 -
2.4460 4300 0.6124 -
2.4744 4350 0.6326 -
2.5028 4400 0.6349 0.9462
2.5313 4450 0.6286 -
2.5597 4500 0.6325 -
2.5882 4550 0.6399 -
2.6166 4600 0.6184 0.9317
2.6451 4650 0.6292 -
2.6735 4700 0.6017 -
2.7019 4750 0.6305 -
2.7304 4800 0.6152 0.9213
2.7588 4850 0.5972 -
2.7873 4900 0.6048 -
2.8157 4950 0.6096 -
2.8441 5000 0.6156 0.9073
2.8726 5050 0.5942 -
2.9010 5100 0.592 -
2.9295 5150 0.6088 -
2.9579 5200 0.5941 0.8950
2.9863 5250 0.6161 -
3.0148 5300 0.5021 -
3.0432 5350 0.4116 -
3.0717 5400 0.3936 0.9009
3.1001 5450 0.4193 -
3.1286 5500 0.422 -
3.1570 5550 0.432 -
3.1854 5600 0.4281 0.8985
3.2139 5650 0.4091 -
3.2423 5700 0.4305 -
3.2708 5750 0.4203 -
3.2992 5800 0.4193 0.8869
3.3276 5850 0.4238 -
3.3561 5900 0.4274 -
3.3845 5950 0.4124 -
3.4130 6000 0.4241 0.8842
3.4414 6050 0.427 -
3.4699 6100 0.4275 -
3.4983 6150 0.4152 -
3.5267 6200 0.4247 0.8733
3.5552 6250 0.4111 -
3.5836 6300 0.4396 -
3.6121 6350 0.4122 -
3.6405 6400 0.4252 0.8657
3.6689 6450 0.4167 -
3.6974 6500 0.4282 -
3.7258 6550 0.411 -
3.7543 6600 0.4273 0.8540
3.7827 6650 0.4327 -
3.8111 6700 0.431 -
3.8396 6750 0.4347 -
3.8680 6800 0.4264 0.8523
3.8965 6850 0.4213 -
3.9249 6900 0.4285 -
3.9534 6950 0.4138 -
3.9818 7000 0.4051 0.8407
4.0102 7050 0.3779 -
4.0387 7100 0.2957 -
4.0671 7150 0.2939 -
4.0956 7200 0.3065 0.8590
4.1240 7250 0.3081 -
4.1524 7300 0.3043 -
4.1809 7350 0.3176 -
4.2093 7400 0.3067 0.8487
4.2378 7450 0.299 -
4.2662 7500 0.3106 -
4.2947 7550 0.3062 -
4.3231 7600 0.3153 0.8498
4.3515 7650 0.3206 -
4.3800 7700 0.3202 -
4.4084 7750 0.3167 -
4.4369 7800 0.3044 0.8426
4.4653 7850 0.3015 -
4.4937 7900 0.3157 -
4.5222 7950 0.3109 -
4.5506 8000 0.3164 0.8385
4.5791 8050 0.2996 -
4.6075 8100 0.3247 -
4.6359 8150 0.3093 -
4.6644 8200 0.3017 0.8294
4.6928 8250 0.3075 -
4.7213 8300 0.3006 -
4.7497 8350 0.3134 -
4.7782 8400 0.3111 0.8249
4.8066 8450 0.3165 -
4.8350 8500 0.3071 -
4.8635 8550 0.3017 -
4.8919 8600 0.3092 0.8225
4.9204 8650 0.3 -
4.9488 8700 0.2999 -
4.9772 8750 0.3116 -
5.0057 8800 0.3046 0.8173
5.0341 8850 0.2501 -
5.0626 8900 0.2443 -
5.0910 8950 0.2338 -
5.1195 9000 0.2382 0.8248
5.1479 9050 0.2524 -
5.1763 9100 0.2427 -
5.2048 9150 0.2512 -
5.2332 9200 0.2377 0.8218
5.2617 9250 0.2458 -
5.2901 9300 0.2515 -
5.3185 9350 0.2453 -
5.3470 9400 0.244 0.8226
5.3754 9450 0.2389 -
5.4039 9500 0.253 -
5.4323 9550 0.2509 -
5.4608 9600 0.2492 0.8198
5.4892 9650 0.2379 -
5.5176 9700 0.247 -
5.5461 9750 0.2419 -
5.5745 9800 0.244 0.8150
5.6030 9850 0.2498 -
5.6314 9900 0.2381 -
5.6598 9950 0.2425 -
5.6883 10000 0.2451 0.8148
5.7167 10050 0.2468 -
5.7452 10100 0.2404 -
5.7736 10150 0.2397 -
5.8020 10200 0.2417 0.8124
5.8305 10250 0.2446 -
5.8589 10300 0.2443 -
5.8874 10350 0.2465 -
5.9158 10400 0.2472 0.8121

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.7.0+cu126
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
10
Safetensors
Model size
326M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for slxhere/modern_ancientpoem_encoder

Finetuned
(1)
this model

Space using slxhere/modern_ancientpoem_encoder 1