bert-base-nsmc
This model is a fine-tuned version of klue/bert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0307
- Train Accuracy: 0.9903
- Validation Loss: 0.5235
- Validation Accuracy: 0.8786
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.4039 | 0.8085 | 0.3092 | 0.8712 | 0 |
0.2184 | 0.9145 | 0.3587 | 0.8716 | 1 |
0.1104 | 0.9609 | 0.4264 | 0.8708 | 2 |
0.0525 | 0.9825 | 0.4858 | 0.8780 | 3 |
0.0307 | 0.9903 | 0.5235 | 0.8786 | 4 |
Framework versions
- Transformers 4.48.3
- TensorFlow 2.18.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for skyss/bert-base-nsmc
Base model
klue/bert-base