Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_config: Open-Orca/Mistral-7B-OpenOrca
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false

flash_attention: true
xformers_attention:

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  - path: skymizer/open-orca-conversations
    type: chat_template
    field_messages: messages
    train_on_split: train

test_datasets:
  - path: skymizer/open-orca-conversations
    type: chat_template
    field_messages: messages
    split: test

hf_use_auth_token: true
dataset_prepared_path: /mnt/home/model-team/dataset/pretokenized/open-orca
output_dir: /mnt/home/model-team/models

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]

wandb_project: "axolotl_mistral_sft"
wandb_entity:
wandb_watch:
wandb_name: "mistral-7B-v0.1-open-orca-q-sparse-v5"
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 16
eval_batch_size: 
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.000005
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

hub_model_id: "skymizer/mistral-7B-v0.1-open-orca-q-sparse-v5"

save_strategy: "steps"
save_steps: 300

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1

warmup_ratio: 0.03
eval_steps: 300
eval_table_size:
eval_max_new_tokens: 2048
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42

mistral-7B-v0.1-open-orca-q-sparse-v5

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2590

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 64
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2048
  • total_eval_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 45
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
10.9215 0.0027 1 10.9181
3.1183 0.7989 300 3.0931
2.6533 1.5965 600 2.6626
2.3968 2.3941 900 2.4077
2.2562 3.1917 1200 2.2858
2.2427 3.9907 1500 2.2590

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
45
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for skymizer/mistral-7B-v0.1-open-orca-q-sparse-v5

Finetuned
(817)
this model
Quantizations
2 models