See axolotl config
axolotl version: 0.5.2
base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_config: Open-Orca/Mistral-7B-OpenOrca
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false
flash_attention: true
xformers_attention:
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: skymizer/open-orca-conversations
type: chat_template
field_messages: messages
train_on_split: train
test_datasets:
- path: skymizer/open-orca-conversations
type: chat_template
field_messages: messages
split: test
hf_use_auth_token: true
dataset_prepared_path: /mnt/home/model-team/dataset/pretokenized/open-orca
output_dir: /mnt/home/model-team/models
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]
wandb_project: "axolotl_mistral_sft"
wandb_entity:
wandb_watch:
wandb_name: "mistral-7B-v0.1-open-orca-q-sparse-v5"
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 16
eval_batch_size:
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.000005
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
hub_model_id: "skymizer/mistral-7B-v0.1-open-orca-q-sparse-v5"
save_strategy: "steps"
save_steps: 300
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
warmup_ratio: 0.03
eval_steps: 300
eval_table_size:
eval_max_new_tokens: 2048
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42
mistral-7B-v0.1-open-orca-q-sparse-v5
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2590
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 64
- gradient_accumulation_steps: 2
- total_train_batch_size: 2048
- total_eval_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 45
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.9215 | 0.0027 | 1 | 10.9181 |
3.1183 | 0.7989 | 300 | 3.0931 |
2.6533 | 1.5965 | 600 | 2.6626 |
2.3968 | 2.3941 | 900 | 2.4077 |
2.2562 | 3.1917 | 1200 | 2.2858 |
2.2427 | 3.9907 | 1500 | 2.2590 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 45
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.