Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: skymizer/mistral-7B-v0.1-sft-slim-orca-sonnet-3.5-v4
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false

flash_attention: true
xformers_attention:

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  - path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned
    type: chat_template
    field_messages: messages

test_datasets:
  - path: skymizer/Sonnet3.5-SlimOrcaDedupCleaned
    type: chat_template
    field_messages: messages
    split: test

hf_use_auth_token: true
dataset_prepared_path: pretokenized/slim-orca
output_dir: ./exp_output_artifacts

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]

wandb_project: "axolotl_mistral_sft"
wandb_entity:
wandb_watch:
wandb_name: "mistral-7B-v0.1-csft-relu2-on-slim-orca"
wandb_log_model:

gradient_accumulation_steps: 2
micro_batch_size: 16
eval_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.000005
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 1.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

hub_model_id: "skymizer/mistral-7B-v0.1-csft-relu2-on-slim-orca"
save_strategy: "steps"
save_steps: 50

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1

warmup_ratio: 0.03
eval_steps: 50
eval_table_size:
eval_max_new_tokens: 2048
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42

mistral-7B-v0.1-csft-relu2-on-slim-orca

This model is a fine-tuned version of skymizer/mistral-7B-v0.1-sft-slim-orca-sonnet-3.5-v4 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.6672

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
15.3694 0.0051 1 14.8551
6.8825 0.2558 50 6.7523
6.1034 0.5115 100 6.0549
5.7432 0.7673 150 5.6672

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
4
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for skymizer/mistral-7B-v0.1-csft-relu2-on-slim-orca