Built with Axolotl

See axolotl config

axolotl version: 0.5.2

base_model: mistralai/Mistral-7B-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
tokenizer_use_fast: false
resize_token_embeddings_to_32x: false

flash_attention: true
xformers_attention:

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: skymizer/Mistral-7B-v0.1-base-tokenized-fineweb-edu-45B-4096
    train_on_split: train
    type: completion

test_datasets:
  - path: skymizer/Mistral-7B-v0.1-base-tokenized-fineweb-edu-test-4K
    split: test
    type: completion

is_preprocess: true
skip_prepare_dataset: true

dataset_prepared_path:

hf_use_auth_token: true
output_dir: /mnt/home/model-team/models/Mistral-7B-v0.1-q-sparse-fineweb-edu-10000steps-4M-bs
resume_from_checkpoint:
auto_resume_from_checkpoints: true

sequence_len: 4096
sample_packing: true
sample_packing_group_size: 100000
sample_packing_bin_size: 200
pad_to_sequence_len: true

eval_sample_packing: false
# eval_causal_lm_metrics: ["perplexity"]

wandb_project: "sparse-tuning-cpt"
wandb_entity:
wandb_watch:
wandb_name: "Mistral-7B-v0.1-q-sparse-fineweb-edu-10000steps-4M-bs"
wandb_log_model:

# global batch size = 2 * 8 * 8 GPUs * 8 Nodes * 4096 = 4M
gradient_accumulation_steps: 8
micro_batch_size: 2
eval_batch_size: 1
max_steps: 10000
optimizer: adamw_torch
learning_rate: 0.00005
lr_scheduler: cosine
cosine_min_lr_ratio: 0.2 
weight_decay: 0.01
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 0.000001
max_grad_norm: 2.0

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false

hub_model_id: "skymizer/Mistral-7B-v0.1-q-sparse-fineweb-edu-10000steps-4M-bs"

save_strategy: "steps"
save_steps: 500

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
local_rank:
logging_steps: 1

warmup_steps: 375
eval_steps: 500
eval_table_size:
debug:
deepspeed: /root/train/axolotl/deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
seed: 42

Mistral-7B-v0.1-q-sparse-fineweb-edu-10000steps-4M-bs

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9685

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 64
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 1024
  • total_eval_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 375
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss
11.0878 0.0001 1 11.0615
3.9206 0.0369 500 3.7992
3.4656 0.0738 1000 3.2653
3.1594 0.1108 1500 2.9722
2.7967 0.1477 2000 2.6836
2.5128 0.1846 2500 2.4598
2.373 0.2215 3000 2.3403
2.3049 0.2585 3500 2.2650
2.23 0.2954 4000 2.2105
2.1755 0.3323 4500 2.1676
2.1647 0.3692 5000 2.1317
2.0974 0.4062 5500 2.1022
2.0759 0.4431 6000 2.0765
2.0453 0.4800 6500 2.0548
2.0688 0.5169 7000 2.0364
2.0177 0.5539 7500 2.0201
2.0194 0.5908 8000 2.0058
1.9914 0.6277 8500 1.9938
2.0058 0.6646 9000 1.9841
1.9901 0.7015 9500 1.9759
1.9746 0.7385 10000 1.9685

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
143
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for skymizer/Mistral-7B-v0.1-q-sparse-fineweb-edu-10000steps-4M-bs

Finetuned
(817)
this model