This is a Mistral7B model fine-tuned with 4bit-QLoRA on Czech Wikipedia data. The model is primarily designed for further fine-tuning for Czech-specific NLP tasks, including summarization and question answering. This adaptation allows for better performance in tasks that require an understanding of the Czech language and context.
For exact QLoRA parameters, see the Axolotl's YAML file.
Example of usage::
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "simecek/cswikimistral_0.1"
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", load_in_4bit=True)
def generate_text(prompt, max_new_tokens=50):
inputs = tokenizer(prompt, return_tensors="pt").to(device)
attention_mask = inputs["attention_mask"]
input_ids = inputs["input_ids"]
output = model.generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
)
return tokenizer.decode(output[0], skip_special_tokens=True)
prompt = "Hlavní město České republiky je"
generated_text = generate_text(prompt, max_new_tokens=5)
print(generated_text)
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.