metadata
base_model: aubmindlab/bert-base-arabertv02
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2279719
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: ما هو علاج الفطريات الجلدية؟
sentences:
- >-
كيف سيؤثر ذلك على الطلاب الهنود الذين يدرسون أو يعملون في الولايات
المتحدة إذا أصبح ترامب رئيساً؟
- كيف يمكنك معالجة الأكزيما بشكل طبيعي؟
- كيف تعالج الفطريات الجلدية؟
- source_sentence: >-
So Eric had an initial design idea for a robot, but we didn't have all the
parts figured out, so we did what anybody would do in our situation: we
asked the Internet for help.
sentences:
- >-
وهكذا أول شيء فعلناه هو , بمجرد أن التسلسل خرج من الماكينات , نشرناه على
الإنترنت .
- >-
وكانت لدى "إريك" فكرة مبدئية لصناعة روبوت، ولكن لم يكن لدينا فكرة عن
القطع التي نحتاجها لذلك قمنا بما يمكن أن يقوم به أي شخص بوضعنا قمنا بطلب
المساعدة عبر الإنترنت
- >-
ما هي مواقع الويب التي يجب اتباعها لتوصيات الأسهم خلال اليوم في سوق
الأسهم الهندية؟
- source_sentence: Well, guess what? In England, it's seven per 100,000.
sentences:
- عندما نكون أطفالًا، نتعلم الضحك، ونتعلم الضحك بشكل أساسي في اللعب.
- هذا ليس 10000 دولارا، إنه بالعملة المحلية .
- خمنوا ماذا؟ في إنكلترا، النسبة سبع في كل 000 100.
- source_sentence: ما هي العوامل الحيوية وغير الحيوية؟ كيف تختلف عن بعضها البعض؟
sentences:
- ما هي بعض النصائح لتعلم لغة بايثون؟
- كما تم تسجيل نتائج إيجابية لثلاثة أيام متتالية.
- كيف تقارن العوامل الحيوية والعوامل غير الحيوية وتتناقض؟
- source_sentence: >-
And the piece of art he bought at the yard sale is hanging in his
classroom; he's a teacher now.
sentences:
- هل الرياضيات لغة أخرى؟
- تدريجيا، أصبحت هذه العصافير بمثابة معلمين له.
- >-
أما اللوحات التي أشتراها منّي فهي معلّقة الآن في غرفة الصف خاصّته؛ فقد
أصبح مدرّساً.
model-index:
- name: SentenceTransformer based on aubmindlab/bert-base-arabertv02
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8410341962006318
name: Pearson Cosine
- type: spearman_cosine
value: 0.8422963798504417
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8119358373898954
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8260328397910858
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8138598024349573
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.831707795171752
name: Spearman Euclidean
- type: pearson_dot
value: 0.8371709698109359
name: Pearson Dot
- type: spearman_dot
value: 0.8389681969788781
name: Spearman Dot
- type: pearson_max
value: 0.8410341962006318
name: Pearson Max
- type: spearman_max
value: 0.8422963798504417
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8408199016320912
name: Pearson Cosine
- type: spearman_cosine
value: 0.8415754271206667
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8114852653680014
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8231951698466913
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8125911836775428
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8267107276111355
name: Spearman Euclidean
- type: pearson_dot
value: 0.8357223021732401
name: Pearson Dot
- type: spearman_dot
value: 0.8377004761329118
name: Spearman Dot
- type: pearson_max
value: 0.8408199016320912
name: Pearson Max
- type: spearman_max
value: 0.8415754271206667
name: Spearman Max
SentenceTransformer based on aubmindlab/bert-base-arabertv02
This is a sentence-transformers model finetuned from aubmindlab/bert-base-arabertv02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: aubmindlab/bert-base-arabertv02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("silma-ai/silma-embeddding-matryoshka-0.1")
# Run inference
sentences = [
"And the piece of art he bought at the yard sale is hanging in his classroom; he's a teacher now.",
'أما اللوحات التي أشتراها منّي فهي معلّقة الآن في غرفة الصف خاصّته؛ فقد أصبح مدرّساً.',
'تدريجيا، أصبحت هذه العصافير بمثابة معلمين له.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev-768
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.841 |
spearman_cosine | 0.8423 |
pearson_manhattan | 0.8119 |
spearman_manhattan | 0.826 |
pearson_euclidean | 0.8139 |
spearman_euclidean | 0.8317 |
pearson_dot | 0.8372 |
spearman_dot | 0.839 |
pearson_max | 0.841 |
spearman_max | 0.8423 |
Semantic Similarity
- Dataset:
sts-dev-512
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8408 |
spearman_cosine | 0.8416 |
pearson_manhattan | 0.8115 |
spearman_manhattan | 0.8232 |
pearson_euclidean | 0.8126 |
spearman_euclidean | 0.8267 |
pearson_dot | 0.8357 |
spearman_dot | 0.8377 |
pearson_max | 0.8408 |
spearman_max | 0.8416 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,279,719 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 19.51 tokens
- max: 139 tokens
- min: 4 tokens
- mean: 12.47 tokens
- max: 59 tokens
- min: 4 tokens
- mean: 12.13 tokens
- max: 72 tokens
- Samples:
anchor positive negative كيف أصنع صاروخاً؟
كيف أصنع صاروخاً صناعياً؟
كيف أصنع أول روبوت لي؟
فتاة شابة تجلس على طاولة مع وعاء على رأسها
فتاة صغيرة لديها وعاء على رأسها
رجل يأكل الحبوب في سيارته
كيف يمكنني الانضمام إلى الجيش الهندي بعد البكالوريوس؟
كيف تنضم للجيش الهندي بعد الهندسة؟
كيف لي أن أعرف ماذا أريد أن أفعل في حياتي؟
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Unnamed Dataset
- Size: 600 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 600 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 19.5 tokens
- max: 146 tokens
- min: 4 tokens
- mean: 12.67 tokens
- max: 43 tokens
- min: 4 tokens
- mean: 12.15 tokens
- max: 41 tokens
- Samples:
anchor positive negative And this explanation represents great progress.
وهذا التفسير يمثل تقدماً عظيماً
وأظهرت هذا الإتجاه المذهل.
ثلاثة رجال يلعبون كرة السلة
ثلاثة رجال يلعبون لعبة كرة السلة
رجلين يرتديان ملابس غريبة يقفزان على ملعب كرة السلة
الرجل جالس
رجل يرتدي قميصاً أحمر يعزف الطبول.
رجل في قميص رمادي يقف.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 50per_device_eval_batch_size
: 10learning_rate
: 1e-05bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 50per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | sts-dev-768_spearman_cosine | sts-dev-512_spearman_cosine |
---|---|---|---|---|---|
0.0044 | 50 | - | 0.7749 | 0.7784 | 0.7748 |
0.0088 | 100 | - | 0.6231 | 0.7854 | 0.7809 |
0.0132 | 150 | - | 0.5326 | 0.8028 | 0.7992 |
0.0175 | 200 | - | 0.4880 | 0.8103 | 0.8047 |
0.0219 | 250 | 1.1802 | 0.4398 | 0.8084 | 0.8043 |
0.0263 | 300 | - | 0.4203 | 0.8108 | 0.8058 |
0.0307 | 350 | - | 0.3880 | 0.8134 | 0.8075 |
0.0351 | 400 | - | 0.3998 | 0.8180 | 0.8145 |
0.0395 | 450 | - | 0.3840 | 0.8154 | 0.8114 |
0.0439 | 500 | 0.7483 | 0.3804 | 0.8105 | 0.8056 |
0.0483 | 550 | - | 0.3695 | 0.8147 | 0.8103 |
0.0526 | 600 | - | 0.3649 | 0.8145 | 0.8101 |
0.0570 | 650 | - | 0.3494 | 0.8192 | 0.8157 |
0.0614 | 700 | - | 0.3437 | 0.8159 | 0.8106 |
0.0658 | 750 | 0.6561 | 0.3302 | 0.8158 | 0.8104 |
0.0702 | 800 | - | 0.3359 | 0.8204 | 0.8174 |
0.0746 | 850 | - | 0.3446 | 0.8119 | 0.8094 |
0.0790 | 900 | - | 0.3419 | 0.8265 | 0.8252 |
0.0833 | 950 | - | 0.3197 | 0.8177 | 0.8141 |
0.0877 | 1000 | 0.6178 | 0.3250 | 0.8213 | 0.8185 |
0.0921 | 1050 | - | 0.3017 | 0.8161 | 0.8127 |
0.0965 | 1100 | - | 0.3058 | 0.8232 | 0.8180 |
0.1009 | 1150 | - | 0.3066 | 0.8236 | 0.8193 |
0.1053 | 1200 | - | 0.2924 | 0.8275 | 0.8237 |
0.1097 | 1250 | 0.5633 | 0.3096 | 0.8206 | 0.8173 |
0.1141 | 1300 | - | 0.3009 | 0.8299 | 0.8277 |
0.1184 | 1350 | - | 0.3067 | 0.8158 | 0.8111 |
0.1228 | 1400 | - | 0.2898 | 0.8215 | 0.8180 |
0.1272 | 1450 | - | 0.2810 | 0.8272 | 0.8261 |
0.1316 | 1500 | 0.5337 | 0.2810 | 0.8228 | 0.8187 |
0.1360 | 1550 | - | 0.2772 | 0.8167 | 0.8139 |
0.1404 | 1600 | - | 0.2772 | 0.8228 | 0.8194 |
0.1448 | 1650 | - | 0.2751 | 0.8193 | 0.8153 |
0.1491 | 1700 | - | 0.2579 | 0.8182 | 0.8147 |
0.1535 | 1750 | 0.5154 | 0.2542 | 0.8199 | 0.8166 |
0.1579 | 1800 | - | 0.2607 | 0.8243 | 0.8224 |
0.1623 | 1850 | - | 0.2595 | 0.8280 | 0.8254 |
0.1667 | 1900 | - | 0.2612 | 0.8272 | 0.8255 |
0.1711 | 1950 | - | 0.2644 | 0.8273 | 0.8242 |
0.1755 | 2000 | 0.4838 | 0.2618 | 0.8276 | 0.8246 |
0.1799 | 2050 | - | 0.2553 | 0.8219 | 0.8200 |
0.1842 | 2100 | - | 0.2581 | 0.8232 | 0.8217 |
0.1886 | 2150 | - | 0.2620 | 0.8254 | 0.8232 |
0.1930 | 2200 | - | 0.2627 | 0.8235 | 0.8193 |
0.1974 | 2250 | 0.486 | 0.2597 | 0.8170 | 0.8142 |
0.2018 | 2300 | - | 0.2605 | 0.8261 | 0.8231 |
0.2062 | 2350 | - | 0.2584 | 0.8252 | 0.8222 |
0.2106 | 2400 | - | 0.2663 | 0.8247 | 0.8228 |
0.2149 | 2450 | - | 0.2527 | 0.8285 | 0.8280 |
0.2193 | 2500 | 0.4523 | 0.2487 | 0.8291 | 0.8270 |
0.2237 | 2550 | - | 0.2524 | 0.8257 | 0.8244 |
0.2281 | 2600 | - | 0.2513 | 0.8228 | 0.8210 |
0.2325 | 2650 | - | 0.2531 | 0.8287 | 0.8265 |
0.2369 | 2700 | - | 0.2510 | 0.8224 | 0.8198 |
0.2413 | 2750 | 0.4522 | 0.2523 | 0.8275 | 0.8260 |
0.2457 | 2800 | - | 0.2563 | 0.8301 | 0.8278 |
0.2500 | 2850 | - | 0.2531 | 0.8242 | 0.8242 |
0.2544 | 2900 | - | 0.2527 | 0.8268 | 0.8268 |
0.2588 | 2950 | - | 0.2465 | 0.8228 | 0.8223 |
0.2632 | 3000 | 0.4472 | 0.2422 | 0.8263 | 0.8237 |
0.2676 | 3050 | - | 0.2484 | 0.8223 | 0.8195 |
0.2720 | 3100 | - | 0.2469 | 0.8209 | 0.8206 |
0.2764 | 3150 | - | 0.2419 | 0.8283 | 0.8281 |
0.2808 | 3200 | - | 0.2370 | 0.8303 | 0.8286 |
0.2851 | 3250 | 0.4499 | 0.2374 | 0.8293 | 0.8275 |
0.2895 | 3300 | - | 0.2340 | 0.8255 | 0.8255 |
0.2939 | 3350 | - | 0.2461 | 0.8277 | 0.8292 |
0.2983 | 3400 | - | 0.2421 | 0.8320 | 0.8307 |
0.3027 | 3450 | - | 0.2366 | 0.8286 | 0.8281 |
0.3071 | 3500 | 0.4305 | 0.2389 | 0.8312 | 0.8293 |
0.3115 | 3550 | - | 0.2360 | 0.8305 | 0.8310 |
0.3158 | 3600 | - | 0.2313 | 0.8271 | 0.8256 |
0.3202 | 3650 | - | 0.2182 | 0.8231 | 0.8197 |
0.3246 | 3700 | - | 0.2220 | 0.8274 | 0.8246 |
0.3290 | 3750 | 0.4221 | 0.2305 | 0.8301 | 0.8292 |
0.3334 | 3800 | - | 0.2244 | 0.8285 | 0.8265 |
0.3378 | 3850 | - | 0.2355 | 0.8349 | 0.8331 |
0.3422 | 3900 | - | 0.2256 | 0.8355 | 0.8330 |
0.3466 | 3950 | - | 0.2273 | 0.8330 | 0.8299 |
0.3509 | 4000 | 0.4203 | 0.2334 | 0.8304 | 0.8275 |
0.3553 | 4050 | - | 0.2223 | 0.8323 | 0.8305 |
0.3597 | 4100 | - | 0.2314 | 0.8323 | 0.8299 |
0.3641 | 4150 | - | 0.2196 | 0.8272 | 0.8244 |
0.3685 | 4200 | - | 0.2275 | 0.8342 | 0.8353 |
0.3729 | 4250 | 0.4039 | 0.2209 | 0.8348 | 0.8333 |
0.3773 | 4300 | - | 0.2152 | 0.8314 | 0.8307 |
0.3816 | 4350 | - | 0.2115 | 0.8353 | 0.8325 |
0.3860 | 4400 | - | 0.2195 | 0.8347 | 0.8310 |
0.3904 | 4450 | - | 0.2110 | 0.8293 | 0.8264 |
0.3948 | 4500 | 0.4065 | 0.2115 | 0.8321 | 0.8293 |
0.3992 | 4550 | - | 0.2139 | 0.8312 | 0.8286 |
0.4036 | 4600 | - | 0.2145 | 0.8319 | 0.8285 |
0.4080 | 4650 | - | 0.2127 | 0.8281 | 0.8255 |
0.4124 | 4700 | - | 0.2122 | 0.8292 | 0.8268 |
0.4167 | 4750 | 0.4019 | 0.2160 | 0.8354 | 0.8329 |
0.4211 | 4800 | - | 0.2069 | 0.8296 | 0.8258 |
0.4255 | 4850 | - | 0.2106 | 0.8362 | 0.8335 |
0.4299 | 4900 | - | 0.2130 | 0.8345 | 0.8321 |
0.4343 | 4950 | - | 0.2080 | 0.8307 | 0.8277 |
0.4387 | 5000 | 0.3941 | 0.2184 | 0.8394 | 0.8370 |
0.4431 | 5050 | - | 0.2061 | 0.8334 | 0.8325 |
0.4474 | 5100 | - | 0.2092 | 0.8318 | 0.8307 |
0.4518 | 5150 | - | 0.2108 | 0.8319 | 0.8289 |
0.4562 | 5200 | - | 0.2046 | 0.8359 | 0.8337 |
0.4606 | 5250 | 0.3873 | 0.1990 | 0.8327 | 0.8305 |
0.4650 | 5300 | - | 0.2007 | 0.8332 | 0.8305 |
0.4694 | 5350 | - | 0.1989 | 0.8284 | 0.8247 |
0.4738 | 5400 | - | 0.2117 | 0.8363 | 0.8346 |
0.4782 | 5450 | - | 0.2036 | 0.8329 | 0.8296 |
0.4825 | 5500 | 0.3808 | 0.1999 | 0.8341 | 0.8295 |
0.4869 | 5550 | - | 0.1998 | 0.8336 | 0.8300 |
0.4913 | 5600 | - | 0.2040 | 0.8348 | 0.8331 |
0.4957 | 5650 | - | 0.2068 | 0.8367 | 0.8346 |
0.5001 | 5700 | - | 0.1947 | 0.8333 | 0.8305 |
0.5045 | 5750 | 0.3779 | 0.1969 | 0.8352 | 0.8329 |
0.5089 | 5800 | - | 0.2028 | 0.8372 | 0.8369 |
0.5132 | 5850 | - | 0.2029 | 0.8336 | 0.8319 |
0.5176 | 5900 | - | 0.2029 | 0.8317 | 0.8309 |
0.5220 | 5950 | - | 0.2059 | 0.8270 | 0.8270 |
0.5264 | 6000 | 0.3704 | 0.1997 | 0.8263 | 0.8236 |
0.5308 | 6050 | - | 0.2001 | 0.8280 | 0.8252 |
0.5352 | 6100 | - | 0.1985 | 0.8275 | 0.8241 |
0.5396 | 6150 | - | 0.1976 | 0.8281 | 0.8281 |
0.5440 | 6200 | - | 0.1987 | 0.8270 | 0.8247 |
0.5483 | 6250 | 0.3722 | 0.2045 | 0.8320 | 0.8303 |
0.5527 | 6300 | - | 0.2013 | 0.8292 | 0.8278 |
0.5571 | 6350 | - | 0.2007 | 0.8302 | 0.8279 |
0.5615 | 6400 | - | 0.1949 | 0.8297 | 0.8274 |
0.5659 | 6450 | - | 0.2037 | 0.8335 | 0.8313 |
0.5703 | 6500 | 0.3638 | 0.2060 | 0.8316 | 0.8280 |
0.5747 | 6550 | - | 0.2030 | 0.8372 | 0.8348 |
0.5790 | 6600 | - | 0.1982 | 0.8317 | 0.8295 |
0.5834 | 6650 | - | 0.2075 | 0.8324 | 0.8325 |
0.5878 | 6700 | - | 0.2014 | 0.8306 | 0.8284 |
0.5922 | 6750 | 0.3581 | 0.1983 | 0.8360 | 0.8344 |
0.5966 | 6800 | - | 0.2007 | 0.8337 | 0.8313 |
0.6010 | 6850 | - | 0.2003 | 0.8349 | 0.8338 |
0.6054 | 6900 | - | 0.2018 | 0.8313 | 0.8305 |
0.6098 | 6950 | - | 0.1978 | 0.8323 | 0.8307 |
0.6141 | 7000 | 0.3596 | 0.1991 | 0.8370 | 0.8340 |
0.6185 | 7050 | - | 0.1963 | 0.8330 | 0.8302 |
0.6229 | 7100 | - | 0.1918 | 0.8334 | 0.8320 |
0.6273 | 7150 | - | 0.2008 | 0.8338 | 0.8327 |
0.6317 | 7200 | - | 0.1973 | 0.8320 | 0.8295 |
0.6361 | 7250 | 0.3614 | 0.1891 | 0.8339 | 0.8322 |
0.6405 | 7300 | - | 0.1961 | 0.8355 | 0.8332 |
0.6448 | 7350 | - | 0.1910 | 0.8322 | 0.8304 |
0.6492 | 7400 | - | 0.1926 | 0.8343 | 0.8331 |
0.6536 | 7450 | - | 0.1935 | 0.8310 | 0.8292 |
0.6580 | 7500 | 0.3513 | 0.1969 | 0.8337 | 0.8346 |
0.6624 | 7550 | - | 0.1891 | 0.8331 | 0.8311 |
0.6668 | 7600 | - | 0.1932 | 0.8369 | 0.8341 |
0.6712 | 7650 | - | 0.2041 | 0.8370 | 0.8357 |
0.6756 | 7700 | - | 0.1946 | 0.8335 | 0.8314 |
0.6799 | 7750 | 0.3426 | 0.1955 | 0.8364 | 0.8330 |
0.6843 | 7800 | - | 0.1940 | 0.8316 | 0.8307 |
0.6887 | 7850 | - | 0.1893 | 0.8323 | 0.8322 |
0.6931 | 7900 | - | 0.1839 | 0.8296 | 0.8286 |
0.6975 | 7950 | - | 0.1895 | 0.8321 | 0.8296 |
0.7019 | 8000 | 0.3406 | 0.1901 | 0.8277 | 0.8263 |
0.7063 | 8050 | - | 0.1835 | 0.8331 | 0.8284 |
0.7107 | 8100 | - | 0.1847 | 0.8359 | 0.8342 |
0.7150 | 8150 | - | 0.1892 | 0.8362 | 0.8348 |
0.7194 | 8200 | - | 0.1775 | 0.8339 | 0.8305 |
0.7238 | 8250 | 0.3357 | 0.1921 | 0.8359 | 0.8340 |
0.7282 | 8300 | - | 0.1881 | 0.8369 | 0.8344 |
0.7326 | 8350 | - | 0.1891 | 0.8371 | 0.8363 |
0.7370 | 8400 | - | 0.1880 | 0.8394 | 0.8364 |
0.7414 | 8450 | - | 0.1892 | 0.8348 | 0.8306 |
0.7457 | 8500 | 0.327 | 0.1868 | 0.8388 | 0.8353 |
0.7501 | 8550 | - | 0.1815 | 0.8378 | 0.8352 |
0.7545 | 8600 | - | 0.1877 | 0.8398 | 0.8370 |
0.7589 | 8650 | - | 0.1878 | 0.8392 | 0.8378 |
0.7633 | 8700 | - | 0.1778 | 0.8330 | 0.8304 |
0.7677 | 8750 | 0.3288 | 0.1791 | 0.8390 | 0.8360 |
0.7721 | 8800 | - | 0.1803 | 0.8298 | 0.8270 |
0.7765 | 8850 | - | 0.1803 | 0.8358 | 0.8323 |
0.7808 | 8900 | - | 0.1832 | 0.8330 | 0.8322 |
0.7852 | 8950 | - | 0.1767 | 0.8316 | 0.8286 |
0.7896 | 9000 | 0.329 | 0.1808 | 0.8283 | 0.8254 |
0.7940 | 9050 | - | 0.1842 | 0.8331 | 0.8293 |
0.7984 | 9100 | - | 0.1750 | 0.8304 | 0.8275 |
0.8028 | 9150 | - | 0.1779 | 0.8299 | 0.8270 |
0.8072 | 9200 | - | 0.1799 | 0.8332 | 0.8332 |
0.8115 | 9250 | 0.3283 | 0.1872 | 0.8399 | 0.8371 |
0.8159 | 9300 | - | 0.1842 | 0.8364 | 0.8352 |
0.8203 | 9350 | - | 0.1785 | 0.8415 | 0.8382 |
0.8247 | 9400 | - | 0.1822 | 0.8432 | 0.8407 |
0.8291 | 9450 | - | 0.1745 | 0.8380 | 0.8364 |
0.8335 | 9500 | 0.3271 | 0.1745 | 0.8374 | 0.8352 |
0.8379 | 9550 | - | 0.1746 | 0.8363 | 0.8332 |
0.8423 | 9600 | - | 0.1776 | 0.8391 | 0.8374 |
0.8466 | 9650 | - | 0.1760 | 0.8379 | 0.8353 |
0.8510 | 9700 | - | 0.1806 | 0.8360 | 0.8335 |
0.8554 | 9750 | 0.3309 | 0.1822 | 0.8368 | 0.8337 |
0.8598 | 9800 | - | 0.1765 | 0.8366 | 0.8336 |
0.8642 | 9850 | - | 0.1766 | 0.8353 | 0.8323 |
0.8686 | 9900 | - | 0.1698 | 0.8353 | 0.8315 |
0.8730 | 9950 | - | 0.1715 | 0.8378 | 0.8338 |
0.8773 | 10000 | 0.318 | 0.1782 | 0.8396 | 0.8357 |
0.8817 | 10050 | - | 0.1727 | 0.8382 | 0.8368 |
0.8861 | 10100 | - | 0.1740 | 0.8356 | 0.8330 |
0.8905 | 10150 | - | 0.1723 | 0.8347 | 0.8319 |
0.8949 | 10200 | - | 0.1656 | 0.8336 | 0.8314 |
0.8993 | 10250 | 0.3284 | 0.1742 | 0.8288 | 0.8264 |
0.9037 | 10300 | - | 0.1679 | 0.8315 | 0.8296 |
0.9081 | 10350 | - | 0.1694 | 0.8325 | 0.8296 |
0.9124 | 10400 | - | 0.1723 | 0.8319 | 0.8305 |
0.9168 | 10450 | - | 0.1638 | 0.8340 | 0.8310 |
0.9212 | 10500 | 0.313 | 0.1730 | 0.8371 | 0.8368 |
0.9256 | 10550 | - | 0.1639 | 0.8351 | 0.8327 |
0.9300 | 10600 | - | 0.1634 | 0.8379 | 0.8350 |
0.9344 | 10650 | - | 0.1745 | 0.8353 | 0.8340 |
0.9388 | 10700 | - | 0.1731 | 0.8349 | 0.8346 |
0.9431 | 10750 | 0.3145 | 0.1668 | 0.8333 | 0.8314 |
0.9475 | 10800 | - | 0.1653 | 0.8351 | 0.8338 |
0.9519 | 10850 | - | 0.1655 | 0.8401 | 0.8390 |
0.9563 | 10900 | - | 0.1708 | 0.8376 | 0.8360 |
0.9607 | 10950 | - | 0.1740 | 0.8382 | 0.8364 |
0.9651 | 11000 | 0.3002 | 0.1714 | 0.8401 | 0.8382 |
0.9695 | 11050 | - | 0.1647 | 0.8411 | 0.8393 |
0.9739 | 11100 | - | 0.1701 | 0.8418 | 0.8396 |
0.9782 | 11150 | - | 0.1665 | 0.8394 | 0.8379 |
0.9826 | 11200 | - | 0.1652 | 0.8377 | 0.8376 |
0.9870 | 11250 | 0.3094 | 0.1665 | 0.8408 | 0.8397 |
0.9914 | 11300 | - | 0.1689 | 0.8412 | 0.8393 |
0.9958 | 11350 | - | 0.1674 | 0.8400 | 0.8374 |
1.0002 | 11400 | - | 0.1694 | 0.8395 | 0.8376 |
1.0046 | 11450 | - | 0.1697 | 0.8434 | 0.8419 |
1.0089 | 11500 | 0.3004 | 0.1640 | 0.8399 | 0.8388 |
1.0133 | 11550 | - | 0.1731 | 0.8445 | 0.8426 |
1.0177 | 11600 | - | 0.1618 | 0.8430 | 0.8389 |
1.0221 | 11650 | - | 0.1646 | 0.8414 | 0.8377 |
1.0265 | 11700 | - | 0.1679 | 0.8435 | 0.8401 |
1.0309 | 11750 | 0.2984 | 0.1646 | 0.8413 | 0.8385 |
1.0353 | 11800 | - | 0.1797 | 0.8465 | 0.8432 |
1.0397 | 11850 | - | 0.1758 | 0.8393 | 0.8390 |
1.0440 | 11900 | - | 0.1690 | 0.8401 | 0.8379 |
1.0484 | 11950 | - | 0.1735 | 0.8423 | 0.8404 |
1.0528 | 12000 | 0.2896 | 0.1719 | 0.8384 | 0.8367 |
1.0572 | 12050 | - | 0.1759 | 0.8420 | 0.8403 |
1.0616 | 12100 | - | 0.1659 | 0.8360 | 0.8340 |
1.0660 | 12150 | - | 0.1645 | 0.8368 | 0.8362 |
1.0704 | 12200 | - | 0.1601 | 0.8380 | 0.8355 |
1.0747 | 12250 | 0.2954 | 0.1711 | 0.8406 | 0.8387 |
1.0791 | 12300 | - | 0.1691 | 0.8389 | 0.8370 |
1.0835 | 12350 | - | 0.1721 | 0.8397 | 0.8385 |
1.0879 | 12400 | - | 0.1689 | 0.8379 | 0.8351 |
1.0923 | 12450 | - | 0.1663 | 0.8424 | 0.8402 |
1.0967 | 12500 | 0.2864 | 0.1672 | 0.8418 | 0.8403 |
1.1011 | 12550 | - | 0.1689 | 0.8389 | 0.8386 |
1.1055 | 12600 | - | 0.1664 | 0.8410 | 0.8402 |
1.1098 | 12650 | - | 0.1685 | 0.8387 | 0.8376 |
1.1142 | 12700 | - | 0.1715 | 0.8419 | 0.8402 |
1.1186 | 12750 | 0.2745 | 0.1607 | 0.8373 | 0.8336 |
1.1230 | 12800 | - | 0.1620 | 0.8388 | 0.8379 |
1.1274 | 12850 | - | 0.1623 | 0.8417 | 0.8396 |
1.1318 | 12900 | - | 0.1589 | 0.8360 | 0.8342 |
1.1362 | 12950 | - | 0.1567 | 0.8300 | 0.8298 |
1.1406 | 13000 | 0.2768 | 0.1557 | 0.8406 | 0.8365 |
1.1449 | 13050 | - | 0.1581 | 0.8389 | 0.8363 |
1.1493 | 13100 | - | 0.1611 | 0.8399 | 0.8366 |
1.1537 | 13150 | - | 0.1583 | 0.8358 | 0.8348 |
1.1581 | 13200 | - | 0.1619 | 0.8405 | 0.8387 |
1.1625 | 13250 | 0.2737 | 0.1567 | 0.8373 | 0.8339 |
1.1669 | 13300 | - | 0.1642 | 0.8393 | 0.8374 |
1.1713 | 13350 | - | 0.1646 | 0.8404 | 0.8376 |
1.1756 | 13400 | - | 0.1601 | 0.8419 | 0.8402 |
1.1800 | 13450 | - | 0.1648 | 0.8412 | 0.8391 |
1.1844 | 13500 | 0.2627 | 0.1635 | 0.8403 | 0.8403 |
1.1888 | 13550 | - | 0.1662 | 0.8427 | 0.8407 |
1.1932 | 13600 | - | 0.1687 | 0.8381 | 0.8368 |
1.1976 | 13650 | - | 0.1693 | 0.8366 | 0.8365 |
1.2020 | 13700 | - | 0.1665 | 0.8410 | 0.8397 |
1.2064 | 13750 | 0.2738 | 0.1665 | 0.8373 | 0.8360 |
1.2107 | 13800 | - | 0.1667 | 0.8388 | 0.8389 |
1.2151 | 13850 | - | 0.1674 | 0.8455 | 0.8413 |
1.2195 | 13900 | - | 0.1704 | 0.8419 | 0.8382 |
1.2239 | 13950 | - | 0.1654 | 0.8417 | 0.8398 |
1.2283 | 14000 | 0.2563 | 0.1610 | 0.8414 | 0.8403 |
1.2327 | 14050 | - | 0.1625 | 0.8416 | 0.8380 |
1.2371 | 14100 | - | 0.1705 | 0.8411 | 0.8400 |
1.2414 | 14150 | - | 0.1628 | 0.8400 | 0.8384 |
1.2458 | 14200 | - | 0.1667 | 0.8448 | 0.8435 |
1.2502 | 14250 | 0.2693 | 0.1651 | 0.8406 | 0.8396 |
1.2546 | 14300 | - | 0.1673 | 0.8404 | 0.8388 |
1.2590 | 14350 | - | 0.1630 | 0.8392 | 0.8375 |
1.2634 | 14400 | - | 0.1633 | 0.8413 | 0.8403 |
1.2678 | 14450 | - | 0.1636 | 0.8412 | 0.8398 |
1.2722 | 14500 | 0.266 | 0.1613 | 0.8404 | 0.8379 |
1.2765 | 14550 | - | 0.1625 | 0.8392 | 0.8380 |
1.2809 | 14600 | - | 0.1634 | 0.8418 | 0.8397 |
1.2853 | 14650 | - | 0.1689 | 0.8426 | 0.8428 |
1.2897 | 14700 | - | 0.1617 | 0.8410 | 0.8405 |
1.2941 | 14750 | 0.2643 | 0.1661 | 0.8437 | 0.8417 |
1.2985 | 14800 | - | 0.1629 | 0.8409 | 0.8394 |
1.3029 | 14850 | - | 0.1584 | 0.8413 | 0.8387 |
1.3072 | 14900 | - | 0.1638 | 0.8446 | 0.8433 |
1.3116 | 14950 | - | 0.1644 | 0.8429 | 0.8426 |
1.3160 | 15000 | 0.2624 | 0.1570 | 0.8391 | 0.8386 |
1.3204 | 15050 | - | 0.1535 | 0.8367 | 0.8348 |
1.3248 | 15100 | - | 0.1591 | 0.8381 | 0.8367 |
1.3292 | 15150 | - | 0.1618 | 0.8421 | 0.8409 |
1.3336 | 15200 | - | 0.1554 | 0.8402 | 0.8381 |
1.3380 | 15250 | 0.2621 | 0.1595 | 0.8431 | 0.8427 |
1.3423 | 15300 | - | 0.1595 | 0.8447 | 0.8435 |
1.3467 | 15350 | - | 0.1585 | 0.8408 | 0.8394 |
1.3511 | 15400 | - | 0.1635 | 0.8403 | 0.8389 |
1.3555 | 15450 | - | 0.1569 | 0.8453 | 0.8444 |
1.3599 | 15500 | 0.2552 | 0.1605 | 0.8434 | 0.8412 |
1.3643 | 15550 | - | 0.1542 | 0.8420 | 0.8397 |
1.3687 | 15600 | - | 0.1622 | 0.8456 | 0.8451 |
1.3730 | 15650 | - | 0.1569 | 0.8466 | 0.8443 |
1.3774 | 15700 | - | 0.1550 | 0.8440 | 0.8416 |
1.3818 | 15750 | 0.2532 | 0.1569 | 0.8459 | 0.8445 |
1.3862 | 15800 | - | 0.1567 | 0.8462 | 0.8451 |
1.3906 | 15850 | - | 0.1504 | 0.8442 | 0.8422 |
1.3950 | 15900 | - | 0.1524 | 0.8437 | 0.8419 |
1.3994 | 15950 | - | 0.1491 | 0.8438 | 0.8413 |
1.4038 | 16000 | 0.265 | 0.1533 | 0.8428 | 0.8406 |
1.4081 | 16050 | - | 0.1492 | 0.8425 | 0.8399 |
1.4125 | 16100 | - | 0.1486 | 0.8410 | 0.8386 |
1.4169 | 16150 | - | 0.1530 | 0.8458 | 0.8433 |
1.4213 | 16200 | - | 0.1535 | 0.8437 | 0.8427 |
1.4257 | 16250 | 0.2512 | 0.1508 | 0.8453 | 0.8446 |
1.4301 | 16300 | - | 0.1540 | 0.8427 | 0.8411 |
1.4345 | 16350 | - | 0.1513 | 0.8414 | 0.8388 |
1.4388 | 16400 | - | 0.1553 | 0.8464 | 0.8461 |
1.4432 | 16450 | - | 0.1528 | 0.8434 | 0.8412 |
1.4476 | 16500 | 0.2545 | 0.1522 | 0.8419 | 0.8399 |
1.4520 | 16550 | - | 0.1521 | 0.8423 | 0.8416 |
1.4564 | 16600 | - | 0.1433 | 0.8427 | 0.8410 |
1.4608 | 16650 | - | 0.1500 | 0.8419 | 0.8401 |
1.4652 | 16700 | - | 0.1442 | 0.8425 | 0.8392 |
1.4696 | 16750 | 0.2549 | 0.1496 | 0.8397 | 0.8376 |
1.4739 | 16800 | - | 0.1556 | 0.8463 | 0.8435 |
1.4783 | 16850 | - | 0.1510 | 0.8458 | 0.8432 |
1.4827 | 16900 | - | 0.1469 | 0.8431 | 0.8423 |
1.4871 | 16950 | - | 0.1481 | 0.8456 | 0.8441 |
1.4915 | 17000 | 0.2522 | 0.1512 | 0.8456 | 0.8437 |
1.4959 | 17050 | - | 0.1471 | 0.8455 | 0.8430 |
1.5003 | 17100 | - | 0.1397 | 0.8409 | 0.8383 |
1.5046 | 17150 | - | 0.1414 | 0.8427 | 0.8404 |
1.5090 | 17200 | - | 0.1474 | 0.8432 | 0.8420 |
1.5134 | 17250 | 0.2489 | 0.1499 | 0.8414 | 0.8412 |
1.5178 | 17300 | - | 0.1442 | 0.8390 | 0.8376 |
1.5222 | 17350 | - | 0.1474 | 0.8373 | 0.8370 |
1.5266 | 17400 | - | 0.1435 | 0.8353 | 0.8352 |
1.5310 | 17450 | - | 0.1461 | 0.8380 | 0.8363 |
1.5354 | 17500 | 0.2493 | 0.1477 | 0.8362 | 0.8353 |
1.5397 | 17550 | - | 0.1503 | 0.8398 | 0.8385 |
1.5441 | 17600 | - | 0.1474 | 0.8372 | 0.8376 |
1.5485 | 17650 | - | 0.1499 | 0.8408 | 0.8390 |
1.5529 | 17700 | - | 0.1501 | 0.8386 | 0.8369 |
1.5573 | 17750 | 0.2499 | 0.1474 | 0.8367 | 0.8351 |
1.5617 | 17800 | - | 0.1406 | 0.8380 | 0.8362 |
1.5661 | 17850 | - | 0.1457 | 0.8399 | 0.8396 |
1.5705 | 17900 | - | 0.1486 | 0.8409 | 0.8399 |
1.5748 | 17950 | - | 0.1493 | 0.8407 | 0.8397 |
1.5792 | 18000 | 0.2419 | 0.1490 | 0.8400 | 0.8386 |
1.5836 | 18050 | - | 0.1496 | 0.8403 | 0.8388 |
1.5880 | 18100 | - | 0.1509 | 0.8422 | 0.8401 |
1.5924 | 18150 | - | 0.1513 | 0.8433 | 0.8420 |
1.5968 | 18200 | - | 0.1546 | 0.8420 | 0.8408 |
1.6012 | 18250 | 0.2458 | 0.1529 | 0.8414 | 0.8398 |
1.6055 | 18300 | - | 0.1580 | 0.8414 | 0.8391 |
1.6099 | 18350 | - | 0.1483 | 0.8389 | 0.8363 |
1.6143 | 18400 | - | 0.1501 | 0.8419 | 0.8405 |
1.6187 | 18450 | - | 0.1488 | 0.8413 | 0.8388 |
1.6231 | 18500 | 0.2532 | 0.1499 | 0.8418 | 0.8410 |
1.6275 | 18550 | - | 0.1520 | 0.8409 | 0.8408 |
1.6319 | 18600 | - | 0.1521 | 0.8407 | 0.8392 |
1.6363 | 18650 | - | 0.1459 | 0.8402 | 0.8382 |
1.6406 | 18700 | - | 0.1556 | 0.8433 | 0.8427 |
1.6450 | 18750 | 0.24 | 0.1501 | 0.8421 | 0.8410 |
1.6494 | 18800 | - | 0.1485 | 0.8439 | 0.8425 |
1.6538 | 18850 | - | 0.1526 | 0.8412 | 0.8406 |
1.6582 | 18900 | - | 0.1522 | 0.8422 | 0.8425 |
1.6626 | 18950 | - | 0.1456 | 0.8406 | 0.8390 |
1.6670 | 19000 | 0.2404 | 0.1483 | 0.8412 | 0.8408 |
1.6713 | 19050 | - | 0.1550 | 0.8424 | 0.8428 |
1.6757 | 19100 | - | 0.1493 | 0.8387 | 0.8384 |
1.6801 | 19150 | - | 0.1523 | 0.8391 | 0.8379 |
1.6845 | 19200 | - | 0.1512 | 0.8366 | 0.8343 |
1.6889 | 19250 | 0.2401 | 0.1506 | 0.8372 | 0.8348 |
1.6933 | 19300 | - | 0.1457 | 0.8375 | 0.8343 |
1.6977 | 19350 | - | 0.1500 | 0.8403 | 0.8379 |
1.7021 | 19400 | - | 0.1464 | 0.8380 | 0.8367 |
1.7064 | 19450 | - | 0.1485 | 0.8403 | 0.8397 |
1.7108 | 19500 | 0.2329 | 0.1469 | 0.8450 | 0.8417 |
1.7152 | 19550 | - | 0.1498 | 0.8418 | 0.8391 |
1.7196 | 19600 | - | 0.1427 | 0.8394 | 0.8384 |
1.7240 | 19650 | - | 0.1493 | 0.8399 | 0.8392 |
1.7284 | 19700 | - | 0.1487 | 0.8423 | 0.8406 |
1.7328 | 19750 | 0.2397 | 0.1464 | 0.8420 | 0.8398 |
1.7371 | 19800 | - | 0.1511 | 0.8433 | 0.8406 |
1.7415 | 19850 | - | 0.1502 | 0.8391 | 0.8365 |
1.7459 | 19900 | - | 0.1527 | 0.8404 | 0.8386 |
1.7503 | 19950 | - | 0.1498 | 0.8397 | 0.8390 |
1.7547 | 20000 | 0.2312 | 0.1505 | 0.8413 | 0.8389 |
1.7591 | 20050 | - | 0.1525 | 0.8411 | 0.8396 |
1.7635 | 20100 | - | 0.1491 | 0.8380 | 0.8370 |
1.7679 | 20150 | - | 0.1431 | 0.8395 | 0.8382 |
1.7722 | 20200 | - | 0.1451 | 0.8365 | 0.8352 |
1.7766 | 20250 | 0.2319 | 0.1485 | 0.8388 | 0.8366 |
1.7810 | 20300 | - | 0.1499 | 0.8376 | 0.8367 |
1.7854 | 20350 | - | 0.1448 | 0.8364 | 0.8349 |
1.7898 | 20400 | - | 0.1485 | 0.8346 | 0.8328 |
1.7942 | 20450 | - | 0.1470 | 0.8376 | 0.8364 |
1.7986 | 20500 | 0.2295 | 0.1471 | 0.8386 | 0.8363 |
1.8029 | 20550 | - | 0.1501 | 0.8351 | 0.8329 |
1.8073 | 20600 | - | 0.1494 | 0.8382 | 0.8364 |
1.8117 | 20650 | - | 0.1489 | 0.8405 | 0.8386 |
1.8161 | 20700 | - | 0.1465 | 0.8381 | 0.8372 |
1.8205 | 20750 | 0.2408 | 0.1435 | 0.8398 | 0.8390 |
1.8249 | 20800 | - | 0.1498 | 0.8449 | 0.8431 |
1.8293 | 20850 | - | 0.1487 | 0.8431 | 0.8416 |
1.8337 | 20900 | - | 0.1456 | 0.8419 | 0.8394 |
1.8380 | 20950 | - | 0.1437 | 0.8423 | 0.8408 |
1.8424 | 21000 | 0.2374 | 0.1408 | 0.8425 | 0.8414 |
1.8468 | 21050 | - | 0.1434 | 0.8434 | 0.8418 |
1.8512 | 21100 | - | 0.1486 | 0.8422 | 0.8403 |
1.8556 | 21150 | - | 0.1467 | 0.8429 | 0.8421 |
1.8600 | 21200 | - | 0.1458 | 0.8409 | 0.8402 |
1.8644 | 21250 | 0.2385 | 0.1449 | 0.8411 | 0.8395 |
1.8687 | 21300 | - | 0.1415 | 0.8401 | 0.8390 |
1.8731 | 21350 | - | 0.1462 | 0.8417 | 0.8403 |
1.8775 | 21400 | - | 0.1468 | 0.8423 | 0.8403 |
1.8819 | 21450 | - | 0.1459 | 0.8417 | 0.8394 |
1.8863 | 21500 | 0.2302 | 0.1466 | 0.8396 | 0.8372 |
1.8907 | 21550 | - | 0.1479 | 0.8391 | 0.8363 |
1.8951 | 21600 | - | 0.1407 | 0.8382 | 0.8365 |
1.8995 | 21650 | - | 0.1462 | 0.8377 | 0.8355 |
1.9038 | 21700 | - | 0.1438 | 0.8348 | 0.8343 |
1.9082 | 21750 | 0.2383 | 0.1451 | 0.8371 | 0.8363 |
1.9126 | 21800 | - | 0.1448 | 0.8375 | 0.8360 |
1.9170 | 21850 | - | 0.1389 | 0.8383 | 0.8377 |
1.9214 | 21900 | - | 0.1409 | 0.8379 | 0.8367 |
1.9258 | 21950 | - | 0.1397 | 0.8374 | 0.8352 |
1.9302 | 22000 | 0.2321 | 0.1408 | 0.8405 | 0.8385 |
1.9345 | 22050 | - | 0.1451 | 0.8381 | 0.8363 |
1.9389 | 22100 | - | 0.1467 | 0.8363 | 0.8353 |
1.9433 | 22150 | - | 0.1459 | 0.8352 | 0.8337 |
1.9477 | 22200 | - | 0.1431 | 0.8382 | 0.8355 |
1.9521 | 22250 | 0.2282 | 0.1457 | 0.8385 | 0.8371 |
1.9565 | 22300 | - | 0.1475 | 0.8364 | 0.8359 |
1.9609 | 22350 | - | 0.1483 | 0.8370 | 0.8336 |
1.9653 | 22400 | - | 0.1469 | 0.8406 | 0.8373 |
1.9696 | 22450 | - | 0.1430 | 0.8415 | 0.8391 |
1.9740 | 22500 | 0.2294 | 0.1471 | 0.8417 | 0.8399 |
1.9784 | 22550 | - | 0.1467 | 0.8414 | 0.8413 |
1.9828 | 22600 | - | 0.1464 | 0.8423 | 0.8410 |
1.9872 | 22650 | - | 0.1475 | 0.8431 | 0.8432 |
1.9916 | 22700 | - | 0.1476 | 0.8450 | 0.8442 |
1.9960 | 22750 | 0.2242 | 0.1463 | 0.8443 | 0.8418 |
2.0004 | 22800 | - | 0.1472 | 0.8422 | 0.8412 |
2.0047 | 22850 | - | 0.1506 | 0.8452 | 0.8435 |
2.0091 | 22900 | - | 0.1478 | 0.8463 | 0.8432 |
2.0135 | 22950 | - | 0.1536 | 0.8479 | 0.8454 |
2.0179 | 23000 | 0.2249 | 0.1487 | 0.8453 | 0.8422 |
2.0223 | 23050 | - | 0.1484 | 0.8430 | 0.8410 |
2.0267 | 23100 | - | 0.1524 | 0.8454 | 0.8440 |
2.0311 | 23150 | - | 0.1475 | 0.8450 | 0.8422 |
2.0354 | 23200 | - | 0.1533 | 0.8460 | 0.8435 |
2.0398 | 23250 | 0.2165 | 0.1551 | 0.8428 | 0.8410 |
2.0442 | 23300 | - | 0.1507 | 0.8425 | 0.8400 |
2.0486 | 23350 | - | 0.1517 | 0.8427 | 0.8410 |
2.0530 | 23400 | - | 0.1524 | 0.8404 | 0.8391 |
2.0574 | 23450 | - | 0.1515 | 0.8415 | 0.8408 |
2.0618 | 23500 | 0.2258 | 0.1500 | 0.8392 | 0.8384 |
2.0662 | 23550 | - | 0.1461 | 0.8387 | 0.8362 |
2.0705 | 23600 | - | 0.1429 | 0.8408 | 0.8378 |
2.0749 | 23650 | - | 0.1473 | 0.8410 | 0.8398 |
2.0793 | 23700 | - | 0.1474 | 0.8415 | 0.8402 |
2.0837 | 23750 | 0.2309 | 0.1479 | 0.8425 | 0.8408 |
2.0881 | 23800 | - | 0.1493 | 0.8427 | 0.8390 |
2.0925 | 23850 | - | 0.1469 | 0.8419 | 0.8394 |
2.0969 | 23900 | - | 0.1460 | 0.8426 | 0.8406 |
2.1012 | 23950 | - | 0.1502 | 0.8433 | 0.8418 |
2.1056 | 24000 | 0.2113 | 0.1462 | 0.8423 | 0.8406 |
2.1100 | 24050 | - | 0.1463 | 0.8429 | 0.8398 |
2.1144 | 24100 | - | 0.1459 | 0.8431 | 0.8400 |
2.1188 | 24150 | - | 0.1417 | 0.8403 | 0.8381 |
2.1232 | 24200 | - | 0.1396 | 0.8376 | 0.8371 |
2.1276 | 24250 | 0.2132 | 0.1419 | 0.8382 | 0.8380 |
2.1320 | 24300 | - | 0.1444 | 0.8378 | 0.8377 |
2.1363 | 24350 | - | 0.1399 | 0.8334 | 0.8342 |
2.1407 | 24400 | - | 0.1363 | 0.8382 | 0.8361 |
2.1451 | 24450 | - | 0.1379 | 0.8381 | 0.8369 |
2.1495 | 24500 | 0.2124 | 0.1421 | 0.8403 | 0.8391 |
2.1539 | 24550 | - | 0.1445 | 0.8399 | 0.8391 |
2.1583 | 24600 | - | 0.1452 | 0.8416 | 0.8401 |
2.1627 | 24650 | - | 0.1426 | 0.8411 | 0.8385 |
2.1670 | 24700 | - | 0.1447 | 0.8424 | 0.8407 |
2.1714 | 24750 | 0.2058 | 0.1460 | 0.8422 | 0.8413 |
2.1758 | 24800 | - | 0.1434 | 0.8422 | 0.8418 |
2.1802 | 24850 | - | 0.1443 | 0.8438 | 0.8416 |
2.1846 | 24900 | - | 0.1414 | 0.8422 | 0.8405 |
2.1890 | 24950 | - | 0.1437 | 0.8424 | 0.8407 |
2.1934 | 25000 | 0.2111 | 0.1466 | 0.8401 | 0.8394 |
2.1978 | 25050 | - | 0.1437 | 0.8390 | 0.8377 |
2.2021 | 25100 | - | 0.1446 | 0.8402 | 0.8394 |
2.2065 | 25150 | - | 0.1457 | 0.8394 | 0.8380 |
2.2109 | 25200 | - | 0.1432 | 0.8406 | 0.8380 |
2.2153 | 25250 | 0.2013 | 0.1464 | 0.8412 | 0.8397 |
2.2197 | 25300 | - | 0.1499 | 0.8419 | 0.8388 |
2.2241 | 25350 | - | 0.1466 | 0.8425 | 0.8402 |
2.2285 | 25400 | - | 0.1429 | 0.8424 | 0.8397 |
2.2328 | 25450 | - | 0.1433 | 0.8430 | 0.8404 |
2.2372 | 25500 | 0.2064 | 0.1472 | 0.8410 | 0.8404 |
2.2416 | 25550 | - | 0.1451 | 0.8406 | 0.8386 |
2.2460 | 25600 | - | 0.1480 | 0.8427 | 0.8419 |
2.2504 | 25650 | - | 0.1507 | 0.8409 | 0.8412 |
2.2548 | 25700 | - | 0.1488 | 0.8407 | 0.8398 |
2.2592 | 25750 | 0.2084 | 0.1476 | 0.8401 | 0.8392 |
2.2636 | 25800 | - | 0.1478 | 0.8403 | 0.8388 |
2.2679 | 25850 | - | 0.1509 | 0.8420 | 0.8417 |
2.2723 | 25900 | - | 0.1464 | 0.8417 | 0.8396 |
2.2767 | 25950 | - | 0.1469 | 0.8406 | 0.8388 |
2.2811 | 26000 | 0.2113 | 0.1470 | 0.8422 | 0.8404 |
2.2855 | 26050 | - | 0.1479 | 0.8414 | 0.8411 |
2.2899 | 26100 | - | 0.1488 | 0.8424 | 0.8418 |
2.2943 | 26150 | - | 0.1508 | 0.8429 | 0.8428 |
2.2986 | 26200 | - | 0.1507 | 0.8425 | 0.8422 |
2.3030 | 26250 | 0.2045 | 0.1496 | 0.8423 | 0.8416 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}