metadata
language:
- ko
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1120235
- loss:CachedMultipleNegativesRankingLoss
base_model: answerdotai/ModernBERT-large
widget:
- source_sentence: 나, 가스불, 찻물, 올리다
sentences:
- 나는 가스불에 꽃을 넣은 찻물을 올렸다.
- 과제수행 기간중에 연구 현장에 대해 정기점검을 실시하고, 과제 수행 종료 후에도 일정한 안전조치를 이행하도록 규정한다.
- 고기, 상추, 밥, 나, 올리다
- source_sentence: 파란색 데님 재킷을 입은 여성과 검은색 코트를 입은 여성이 일본 식당 앞에 서 있다.
sentences:
- >-
복합 도금된 시편의 표면과 조성은 전계방출 주사전자현미경(field emission scanning electron
microscopy,FESEM)과 에너지 분산형 X-선 분광기(energy dispersivespectroscopy, EDS)를
이용하여 분석하였다.
- 재킷을 입은 두 여자가 식당 밖에 서 있다.
- 두 여자가 식당 밖에서 음식을 먹는다
- source_sentence: 한 남자가 암벽을 오르고 다른 남자가 아래에 있다.
sentences:
- 남자가 암벽을 기어오르다
- 담당 공무원들은 보호 관찰 대상자를 정기적으로 상담을 했다.
- 한 남자가 암벽에 오른다.
- source_sentence: 골목, 동네, 동, 나누다, 크다, 서
sentences:
- 큰 골목이 우리 동네를 동과 서로 나눠 놓았다.
- 내 아내는 몸에 좋은 음식을 항상 만들어 주었다.
- 골목, 많다, 공간, 놀이, 골목
- source_sentence: 한 소녀가 자전거를 타고 있고 모든 사람들이 도시에서 그녀에게 달려들고 있다.
sentences:
- 소녀는 자전거를 탄다
- 소녀가 자전거를 타고 있다.
- >-
그리고 특수한 소재의 광섬유를 이용한 온도센서는 감도가 고정되는 단점이 있고, 간섭계형 온도센서는 높은 감도의 장점을 가지지만,
2차 코팅이 이루어지지 않은 광섬유 센서나 팁기반 광섬유 센서는 일반적으로 클래드를 제거하여 융착(splicing)을 하기 때문에
취급상에 불편함과 파손되기 쉬운 단점을 가지고 있다.
datasets:
- sigridjineth/korean_nli_dataset_reranker_v1
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: SentenceTransformer based on answerdotai/ModernBERT-large
results:
- task:
type: triplet
name: Triplet
dataset:
name: dev eval
type: dev-eval
metrics:
- type: cosine_accuracy
value: 0.877
name: Cosine Accuracy
SentenceTransformer based on answerdotai/ModernBERT-large
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-large on the korean_nli_dataset_reranker_v1 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-large
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: ko
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Evaluation
Metrics
AutoRAG Retrieval
Metrics |
sigridjineth/ModernBERT-korean-large-preview (241225) |
Alibaba-NLP/gte-multilingual-base |
answerdotai/ModernBERT-large |
NDCG@10 |
0.72503 |
0.77108 |
0.0 |
Recall@10 |
0.87719 |
0.93860 |
0.0 |
Precision@1 |
0.57018 |
0.59649 |
0.0 |
NDCG@100 |
0.74543 |
0.78411 |
0.01565 |
Recall@100 |
0.98246 |
1.0 |
0.09649 |
Recall@1000 |
1.0 |
1.0 |
1.0 |
Triplet
Metric |
Value |
cosine_accuracy |
0.877 |
Training Details
Training Dataset
Training Logs
Epoch |
Step |
dev-eval_cosine_accuracy |
0 |
0 |
0.331 |
4.8783 |
170 |
0.877 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}