wav2vec2-large-mms-1b-evenki-colab
This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7563
- Wer: 0.7135
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
10.0574 | 0.0308 | 100 | 3.4587 | 1.0 |
2.6276 | 0.0615 | 200 | 1.7165 | 0.9800 |
1.2219 | 0.0923 | 300 | 1.2281 | 0.9274 |
1.8242 | 0.1230 | 400 | 1.2651 | 0.9368 |
1.1924 | 0.1538 | 500 | 1.1186 | 0.9025 |
1.6112 | 0.1846 | 600 | 1.1522 | 0.9098 |
1.0251 | 0.2153 | 700 | 1.0574 | 0.8868 |
1.5575 | 0.2461 | 800 | 1.1940 | 0.9190 |
1.0224 | 0.2768 | 900 | 1.0436 | 0.8864 |
1.565 | 0.3076 | 1000 | 1.2350 | 0.9180 |
0.9966 | 0.3384 | 1100 | 1.0639 | 0.8853 |
1.5941 | 0.3691 | 1200 | 1.2018 | 0.9266 |
1.0152 | 0.3999 | 1300 | 1.0436 | 0.8789 |
1.5956 | 0.4306 | 1400 | 1.0546 | 0.8680 |
0.9592 | 0.4614 | 1500 | 1.0166 | 0.8753 |
1.5209 | 0.4922 | 1600 | 0.9918 | 0.8717 |
0.9647 | 0.5229 | 1700 | 0.9670 | 0.8561 |
1.5689 | 0.5537 | 1800 | 1.0313 | 0.8598 |
0.9309 | 0.5844 | 1900 | 0.9857 | 0.8557 |
1.4494 | 0.6152 | 2000 | 1.0370 | 0.9009 |
0.9489 | 0.6460 | 2100 | 0.9802 | 0.8449 |
1.5404 | 0.6767 | 2200 | 1.0277 | 0.8730 |
0.93 | 0.7075 | 2300 | 0.9490 | 0.8214 |
1.5351 | 0.7382 | 2400 | 1.0075 | 0.8489 |
0.86 | 0.7690 | 2500 | 0.9466 | 0.8278 |
1.4075 | 0.7998 | 2600 | 0.9908 | 0.8450 |
0.8978 | 0.8305 | 2700 | 0.9783 | 0.8193 |
1.5049 | 0.8613 | 2800 | 0.9776 | 0.8263 |
0.8631 | 0.8920 | 2900 | 0.9383 | 0.8185 |
1.4381 | 0.9228 | 3000 | 0.9541 | 0.8292 |
0.9529 | 0.9536 | 3100 | 0.9412 | 0.8297 |
1.4904 | 0.9843 | 3200 | 0.9731 | 0.8218 |
0.9834 | 1.0151 | 3300 | 0.9499 | 0.8034 |
1.0134 | 1.0458 | 3400 | 0.9317 | 0.8129 |
1.2938 | 1.0766 | 3500 | 0.9105 | 0.8237 |
0.9878 | 1.1074 | 3600 | 0.9214 | 0.8042 |
1.1626 | 1.1381 | 3700 | 0.9045 | 0.8081 |
1.0864 | 1.1689 | 3800 | 0.9101 | 0.8063 |
1.21 | 1.1996 | 3900 | 0.9097 | 0.7937 |
1.0242 | 1.2304 | 4000 | 0.9051 | 0.7949 |
1.1935 | 1.2612 | 4100 | 0.9088 | 0.8090 |
0.9784 | 1.2919 | 4200 | 0.9132 | 0.8008 |
1.1719 | 1.3227 | 4300 | 0.8861 | 0.7930 |
1.0924 | 1.3534 | 4400 | 0.8914 | 0.8075 |
1.3006 | 1.3842 | 4500 | 0.8807 | 0.7852 |
0.9768 | 1.4149 | 4600 | 0.8859 | 0.7892 |
1.1658 | 1.4457 | 4700 | 0.8922 | 0.7870 |
0.9708 | 1.4765 | 4800 | 0.8684 | 0.7819 |
1.2968 | 1.5072 | 4900 | 0.8680 | 0.7780 |
1.0397 | 1.5380 | 5000 | 0.8960 | 0.7854 |
1.3094 | 1.5687 | 5100 | 0.8742 | 0.7815 |
0.9274 | 1.5995 | 5200 | 0.8732 | 0.7778 |
1.2538 | 1.6303 | 5300 | 0.8639 | 0.7721 |
1.0089 | 1.6610 | 5400 | 0.8713 | 0.7862 |
1.2453 | 1.6918 | 5500 | 0.8620 | 0.7782 |
0.9521 | 1.7225 | 5600 | 0.8551 | 0.7830 |
1.3161 | 1.7533 | 5700 | 0.8577 | 0.7748 |
1.0274 | 1.7841 | 5800 | 0.8573 | 0.7795 |
1.2341 | 1.8148 | 5900 | 0.8379 | 0.7600 |
0.9222 | 1.8456 | 6000 | 0.8630 | 0.7726 |
1.0861 | 1.8763 | 6100 | 0.8489 | 0.7634 |
0.9341 | 1.9071 | 6200 | 0.8411 | 0.7606 |
1.1717 | 1.9379 | 6300 | 0.8506 | 0.7747 |
0.9205 | 1.9686 | 6400 | 0.8626 | 0.7655 |
1.1891 | 1.9994 | 6500 | 0.8571 | 0.7706 |
0.8629 | 2.0301 | 6600 | 0.8422 | 0.7666 |
1.1854 | 2.0609 | 6700 | 0.8483 | 0.7644 |
0.8767 | 2.0917 | 6800 | 0.8215 | 0.7536 |
1.2317 | 2.1224 | 6900 | 0.8582 | 0.7751 |
0.8572 | 2.1532 | 7000 | 0.8308 | 0.7569 |
1.2478 | 2.1839 | 7100 | 0.8172 | 0.7457 |
0.8012 | 2.2147 | 7200 | 0.8261 | 0.7624 |
1.3722 | 2.2455 | 7300 | 0.8543 | 0.7608 |
0.8545 | 2.2762 | 7400 | 0.8267 | 0.7617 |
1.1439 | 2.3070 | 7500 | 0.8354 | 0.7565 |
0.7752 | 2.3377 | 7600 | 0.8200 | 0.7540 |
1.3572 | 2.3685 | 7700 | 0.8276 | 0.7524 |
0.7083 | 2.3993 | 7800 | 0.8268 | 0.7502 |
1.2719 | 2.4300 | 7900 | 0.8276 | 0.7600 |
0.7618 | 2.4608 | 8000 | 0.8153 | 0.7540 |
1.1886 | 2.4915 | 8100 | 0.8194 | 0.7528 |
0.7902 | 2.5223 | 8200 | 0.8111 | 0.7518 |
1.2395 | 2.5531 | 8300 | 0.8252 | 0.7410 |
0.8243 | 2.5838 | 8400 | 0.8093 | 0.7439 |
1.2454 | 2.6146 | 8500 | 0.8115 | 0.7400 |
0.8353 | 2.6453 | 8600 | 0.8060 | 0.7370 |
1.1679 | 2.6761 | 8700 | 0.8114 | 0.7539 |
0.7987 | 2.7069 | 8800 | 0.8039 | 0.7467 |
1.1435 | 2.7376 | 8900 | 0.8152 | 0.7474 |
0.8146 | 2.7684 | 9000 | 0.7977 | 0.7476 |
1.1233 | 2.7991 | 9100 | 0.7973 | 0.7388 |
0.7887 | 2.8299 | 9200 | 0.7969 | 0.7398 |
1.2149 | 2.8607 | 9300 | 0.8013 | 0.7511 |
0.775 | 2.8914 | 9400 | 0.7857 | 0.7328 |
1.2072 | 2.9222 | 9500 | 0.7999 | 0.7357 |
0.7742 | 2.9529 | 9600 | 0.7901 | 0.7322 |
1.2508 | 2.9837 | 9700 | 0.7914 | 0.7368 |
0.8621 | 3.0145 | 9800 | 0.7836 | 0.7402 |
0.8507 | 3.0452 | 9900 | 0.7790 | 0.7290 |
1.0266 | 3.0760 | 10000 | 0.7882 | 0.7329 |
0.8631 | 3.1067 | 10100 | 0.7882 | 0.7281 |
1.1433 | 3.1375 | 10200 | 0.7823 | 0.7307 |
0.8892 | 3.1683 | 10300 | 0.7873 | 0.7321 |
1.0211 | 3.1990 | 10400 | 0.7836 | 0.7273 |
0.9307 | 3.2298 | 10500 | 0.7818 | 0.7248 |
1.1533 | 3.2605 | 10600 | 0.7757 | 0.7266 |
0.8969 | 3.2913 | 10700 | 0.7786 | 0.7198 |
1.0713 | 3.3221 | 10800 | 0.7787 | 0.7170 |
0.8816 | 3.3528 | 10900 | 0.7803 | 0.7199 |
1.1048 | 3.3836 | 11000 | 0.7777 | 0.7199 |
0.8707 | 3.4143 | 11100 | 0.7750 | 0.7225 |
0.9713 | 3.4451 | 11200 | 0.7789 | 0.7177 |
0.7791 | 3.4759 | 11300 | 0.7733 | 0.7170 |
1.0315 | 3.5066 | 11400 | 0.7691 | 0.7187 |
0.7899 | 3.5374 | 11500 | 0.7681 | 0.7180 |
0.9405 | 3.5681 | 11600 | 0.7661 | 0.7175 |
0.8365 | 3.5989 | 11700 | 0.7629 | 0.7196 |
1.1294 | 3.6297 | 11800 | 0.7638 | 0.7153 |
0.8537 | 3.6604 | 11900 | 0.7647 | 0.7114 |
1.1291 | 3.6912 | 12000 | 0.7593 | 0.7162 |
0.7939 | 3.7219 | 12100 | 0.7618 | 0.7110 |
1.1158 | 3.7527 | 12200 | 0.7617 | 0.7128 |
0.8674 | 3.7835 | 12300 | 0.7583 | 0.7118 |
1.0904 | 3.8142 | 12400 | 0.7600 | 0.7138 |
0.779 | 3.8450 | 12500 | 0.7574 | 0.7116 |
0.9692 | 3.8757 | 12600 | 0.7569 | 0.7116 |
0.7636 | 3.9065 | 12700 | 0.7564 | 0.7138 |
1.0034 | 3.9373 | 12800 | 0.7577 | 0.7138 |
0.7543 | 3.9680 | 12900 | 0.7566 | 0.7140 |
1.0205 | 3.9988 | 13000 | 0.7563 | 0.7135 |
Framework versions
- Transformers 4.52.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 57
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for siberian-lang-lab/wav2vec2-large-mms-1b-evenki-colab
Base model
facebook/mms-1b-all