See axolotl config
axolotl version: 0.7.0
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: data/training_data.json
type: chat_template
field_messages: messages
message_property_mappings:
role: role
content: content
roles:
user:
- user
assistant:
- assistant
dataset_prepared_path:
val_set_size: 0.1
output_dir: ./output/llama_1e-5_r_256_alpha_512
sequence_len: 8000
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 256
lora_alpha: 512
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: llama-review
wandb_entity:
wandb_watch:
wandb_name: llama_1e-5_r_256_alpha_512
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 100
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_3.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
output/llama_1e-5_r_256_alpha_512
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the data/training_data.json dataset. It achieves the following results on the evaluation set:
- Loss: 13.8053
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
13.8163 | 0.9995 | 491 | 13.8053 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for shuoxing/Llama3-8b-Review-lora-lr-1e-5-a-256-alpha-512
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct