See axolotl config
axolotl version: 0.8.0.dev0
# train w/ shisa-ai/shisa-v1-athenev2-reannotated-filtered
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
# User Liger
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
chat_template: llama3
datasets:
- path: shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt
# type: sharegpt deprecated
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
- path: shisa-ai/shisa-v2-roleplaying-sft
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/translation_expanded_master_set_filtered
split: train[:25%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/rewild-set
split: train[:5%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/magpie-ultra-set
split: train[:8%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/magpie-advanced-questions-set
split: train[:8%]
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
- path: shisa-ai/japan-magpie-set
split: train
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
roles:
system:
- system
assistant:
- gpt
- model
- assistant
user:
- human
- user
roles_to_train: ["assistant"]
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/ablation-136-shisav2.gbs128.1.2e5-shisa-v2-llama-3.1-8b
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# marginal difference
neftune_noise_alpha: 5
use_wandb: true
wandb_project: shisa-v2
wandb_entity: augmxnt
wandb_name: ablation-136-shisav2.gbs128.1.2e5-shisa-v2-llama-3.1-8b
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 1.2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
debug:
deepspeed: zero3_bf16.json
weight_decay: 1e-4
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/ablation-136-shisav2.gbs128.1.2e5-shisa-v2-llama-3.1-8b
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the shisa-ai/shisa-v2-best-of-n-athenev2-tulu70b-llama33-only-no-sysprompt, the shisa-ai/shisa-v2-roleplaying-sft, the shisa-ai/translation_expanded_master_set_filtered, the shisa-ai/rewild-set, the shisa-ai/magpie-ultra-set, the shisa-ai/magpie-advanced-questions-set and the shisa-ai/japan-magpie-set datasets. It achieves the following results on the evaluation set:
- Loss: 0.6865
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0924 | 0.0027 | 1 | 1.0969 |
0.7608 | 0.5 | 187 | 0.7526 |
0.7082 | 1.0 | 374 | 0.7072 |
0.6274 | 1.5 | 561 | 0.6944 |
0.6004 | 2.0 | 748 | 0.6800 |
0.5328 | 2.5 | 935 | 0.6904 |
0.539 | 3.0 | 1122 | 0.6865 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support