aoi_clip_high_resolution_cross_attention_fusin
This model is a fine-tuned version of OFA-Sys/chinese-clip-vit-base-patch16 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.0266
- Accuracy: 0.0266
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 40
- eval_batch_size: 40
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.4856 | 5.9923 | 1866 | 3.6872 | 0.0237 |
2.4767 | 11.9846 | 3732 | 3.6874 | 0.0244 |
2.4784 | 17.9769 | 5598 | 3.6876 | 0.0247 |
2.4728 | 23.9692 | 7464 | 3.6878 | 0.0251 |
2.473 | 29.9615 | 9330 | 3.6875 | 0.0255 |
2.4621 | 35.9538 | 11196 | 3.7371 | 0.0266 |
2.3868 | 41.9461 | 13062 | 3.8208 | 0.0269 |
2.3293 | 47.9383 | 14928 | 3.8805 | 0.0268 |
2.2917 | 53.9306 | 16794 | 3.9713 | 0.0267 |
2.2787 | 59.9229 | 18660 | 4.0266 | 0.0266 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for sharkMeow/aoi_clip_high_resolution_cross_attention_fusin
Base model
OFA-Sys/chinese-clip-vit-base-patch16