cross-encoder/ms-marco-MiniLM-L12-v2
This is a Cross Encoder model finetuned from cross-encoder/ms-marco-MiniLM-L12-v2 on the vodex-turkish-reranker-triplets dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: cross-encoder/ms-marco-MiniLM-L12-v2
- Maximum Sequence Length: 512 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Language: tr
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("seroe/ms-marco-MiniLM-L12-v2-turkish-reranker-triplet")
# Get scores for pairs of texts
pairs = [
['Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?', 'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.'],
['Kampanya süresince internet hızı nasıl değişebilir?', 'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.'],
["Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?", "Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir."],
['Taahhüt süresi dolmadan internet hizmeti iptal edilirse ne olur?', 'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.'],
['Aylık 15 GB ek paketini nereden satın alabilirim?', 'Bu ek paketi almak için hangi kanalları kullanabilirim?'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?',
[
'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.',
'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.',
"Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.",
'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.',
'Bu ek paketi almak için hangi kanalları kullanabilirim?',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Datasets:
val-hard
andtest-hard
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | val-hard | test-hard |
---|---|---|
map | 0.6082 (-0.0256) | 0.6059 (-0.0204) |
mrr@10 | 0.6074 (-0.0264) | 0.6051 (-0.0212) |
ndcg@10 | 0.6986 (+0.0633) | 0.6967 (+0.0686) |
Training Details
Training Dataset
vodex-turkish-reranker-triplets
- Dataset: vodex-turkish-reranker-triplets at ca7d206
- Size: 89,964 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 20 characters
- mean: 57.83 characters
- max: 112 characters
- min: 35 characters
- mean: 92.19 characters
- max: 221 characters
- min: 31 characters
- mean: 78.41 characters
- max: 143 characters
- Samples:
query positive negative Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?
Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.
Faturasız tarifelerde yurtdışı mesaj ücretleri 10 kuruş olarak uygulanmaktadır.
Kampanya süresince internet hızı nasıl değişebilir?
Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.
Kampanya süresince internet hızı sabit kalır ve değişiklik yapılamaz.
Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?
Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.
Vodafone tarifelerinde KDV ve ÖİV, abonelerin talep etmesi durumunda eklenmektedir.
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 10.0, "num_negatives": 4, "activation_fn": "torch.nn.modules.activation.Sigmoid", "mini_batch_size": 32 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024learning_rate
: 5e-07weight_decay
: 0.1max_grad_norm
: 0.8warmup_ratio
: 0.25bf16
: Truedataloader_num_workers
: 8load_best_model_at_end
: Truegroup_by_length
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-07weight_decay
: 0.1adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 0.8num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.25warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 8dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Truelength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | val-hard_ndcg@10 | test-hard_ndcg@10 |
---|---|---|---|---|
0.5682 | 50 | - | 0.7103 (+0.0750) | 0.7063 (+0.0782) |
1.125 | 100 | 1.3021 | 0.7094 (+0.0741) | 0.7065 (+0.0783) |
1.6932 | 150 | - | 0.7041 (+0.0688) | 0.7047 (+0.0765) |
2.25 | 200 | 0.9216 | 0.6997 (+0.0643) | 0.6996 (+0.0715) |
2.8182 | 250 | - | 0.6986 (+0.0633) | 0.6967 (+0.0686) |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for seroe/ms-marco-MiniLM-L12-v2-turkish-reranker-triplet
Base model
microsoft/MiniLM-L12-H384-uncased
Quantized
cross-encoder/ms-marco-MiniLM-L12-v2
Dataset used to train seroe/ms-marco-MiniLM-L12-v2-turkish-reranker-triplet
Evaluation results
- Map on val hardself-reported0.608
- Mrr@10 on val hardself-reported0.607
- Ndcg@10 on val hardself-reported0.699
- Map on test hardself-reported0.606
- Mrr@10 on test hardself-reported0.605
- Ndcg@10 on test hardself-reported0.697