cross-encoder/mmarco-mMiniLMv2-L12-H384-v1

This is a Cross Encoder model finetuned from cross-encoder/mmarco-mMiniLMv2-L12-H384-v1 on the vodex-turkish-reranker-triplets dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("seroe/mmarco-mMiniLMv2-L12-H384-v1-turkish-reranker-triplet")
# Get scores for pairs of texts
pairs = [
    ['Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?', 'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.'],
    ['Kampanya süresince internet hızı nasıl değişebilir?', 'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.'],
    ["Vodafone'un tarifelerinde KDV ve ÖİV dahil midir?", "Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir."],
    ['Taahhüt süresi dolmadan internet hizmeti iptal edilirse ne olur?', 'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.'],
    ['Aylık 15 GB ek paketini nereden satın alabilirim?', 'Bu ek paketi almak için hangi kanalları kullanabilirim?'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır?',
    [
        'Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir.',
        'Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir.',
        "Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir.",
        'Eğer taahhüt süresi bitmeden internet hizmeti iptal edilirse, aboneye sunulan D-Smart hizmeti de iptal edilecektir.',
        'Bu ek paketi almak için hangi kanalları kullanabilirim?',
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

  • Datasets: val-hard and test-hard
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric val-hard test-hard
map 0.6093 (-0.0246) 0.6085 (-0.0178)
mrr@10 0.6085 (-0.0254) 0.6077 (-0.0186)
ndcg@10 0.6994 (+0.0641) 0.6987 (+0.0705)

Training Details

Training Dataset

vodex-turkish-reranker-triplets

  • Dataset: vodex-turkish-reranker-triplets at ca7d206
  • Size: 89,964 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 20 characters
    • mean: 57.83 characters
    • max: 112 characters
    • min: 35 characters
    • mean: 92.19 characters
    • max: 221 characters
    • min: 31 characters
    • mean: 78.41 characters
    • max: 143 characters
  • Samples:
    query positive negative
    Faturasız tarifelerde yurtdışı mesaj ücretleri ne kadardır? Yurtdışına gönderilen mesajlar için ücret 75 kuruş olarak belirlenmiştir. Faturasız tarifelerde yurtdışı mesaj ücretleri 10 kuruş olarak uygulanmaktadır.
    Kampanya süresince internet hızı nasıl değişebilir? Kampanya süresince, limit ve altyapının desteklediği azami internet hızına kadar internet hızı yükseltilebilir. Kampanya süresince internet hızı sabit kalır ve değişiklik yapılamaz.
    Vodafone'un tarifelerinde KDV ve ÖİV dahil midir? Vodafone'un tarifelerinde belirtilen ücretlere KDV ve ÖİV dahildir. Vodafone tarifelerinde KDV ve ÖİV, abonelerin talep etmesi durumunda eklenmektedir.
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 10.0,
        "num_negatives": 4,
        "activation_fn": "torch.nn.modules.activation.Sigmoid",
        "mini_batch_size": 32
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • learning_rate: 5e-07
  • weight_decay: 0.1
  • max_grad_norm: 0.8
  • warmup_ratio: 0.25
  • bf16: True
  • dataloader_num_workers: 8
  • load_best_model_at_end: True
  • group_by_length: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-07
  • weight_decay: 0.1
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 0.8
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.25
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 8
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: True
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss val-hard_ndcg@10 test-hard_ndcg@10
1.125 100 1.3041 0.7093 (+0.0740) 0.7065 (+0.0783)
2.25 200 0.9232 0.6994 (+0.0641) 0.6987 (+0.0705)

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
11
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for seroe/mmarco-mMiniLMv2-L12-H384-v1-turkish-reranker-triplet

Dataset used to train seroe/mmarco-mMiniLMv2-L12-H384-v1-turkish-reranker-triplet

Evaluation results