DeBERTaV3_model_V3 / README.md
sergiomvazq's picture
End of training
a48477d verified
|
raw
history blame
2.37 kB
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: DeBERTaV3_model_V3
    results: []

DeBERTaV3_model_V3

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1653
  • Accuracy: 0.9454
  • F1: 0.7754
  • Precision: 0.7975
  • Recall: 0.7545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 90 0.3559 0.875 0.0 0.0 0.0
No log 2.0 180 0.2851 0.9087 0.4602 0.8814 0.3114
No log 3.0 270 0.2462 0.9049 0.4940 0.7381 0.3713
No log 4.0 360 0.2183 0.9222 0.6232 0.7890 0.5150
No log 5.0 450 0.1938 0.9304 0.6869 0.7846 0.6108
0.2617 6.0 540 0.1804 0.9349 0.7129 0.7941 0.6467
0.2617 7.0 630 0.1752 0.9364 0.7231 0.7929 0.6647
0.2617 8.0 720 0.1719 0.9409 0.7539 0.7857 0.7246
0.2617 9.0 810 0.1676 0.9424 0.7601 0.7922 0.7305
0.2617 10.0 900 0.1653 0.9454 0.7754 0.7975 0.7545

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1