SPACE-2

Model from the paper "SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for Task-Oriented Dialog Understanding".

This a port of the original SPACE-2 model using authors' original space2hug.py convertion script.

This is a sentence-transformers wrapper around the ported model.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sergioburdisso/space-2')
embeddings = model.encode(sentences)
print(embeddings)

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
Downloads last month
12
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.