SentenceTransformer based on jinaai/jina-clip-v2

This is a sentence-transformers model finetuned from jinaai/jina-clip-v2. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jinaai/jina-clip-v2
  • Maximum Sequence Length: None tokens
  • Output Dimensionality: None dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (transformer): Transformer(
    (model): JinaCLIPModel(
      (text_model): HFTextEncoder(
        (transformer): XLMRobertaLoRA(
          (roberta): XLMRobertaModel(
            (embeddings): XLMRobertaEmbeddings(
              (word_embeddings): ParametrizedEmbedding(
                250002, 1024, padding_idx=1
                (parametrizations): ModuleDict(
                  (weight): ParametrizationList(
                    (0): LoRAParametrization()
                  )
                )
              )
              (token_type_embeddings): ParametrizedEmbedding(
                1, 1024
                (parametrizations): ModuleDict(
                  (weight): ParametrizationList(
                    (0): LoRAParametrization()
                  )
                )
              )
            )
            (emb_drop): Dropout(p=0.1, inplace=False)
            (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (encoder): XLMRobertaEncoder(
              (layers): ModuleList(
                (0-23): 24 x Block(
                  (mixer): MHA(
                    (rotary_emb): RotaryEmbedding()
                    (Wqkv): ParametrizedLinearResidual(
                      in_features=1024, out_features=3072, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                    (inner_attn): SelfAttention(
                      (drop): Dropout(p=0.1, inplace=False)
                    )
                    (inner_cross_attn): CrossAttention(
                      (drop): Dropout(p=0.1, inplace=False)
                    )
                    (out_proj): ParametrizedLinear(
                      in_features=1024, out_features=1024, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                  )
                  (dropout1): Dropout(p=0.1, inplace=False)
                  (drop_path1): StochasticDepth(p=0.0, mode=row)
                  (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                  (mlp): Mlp(
                    (fc1): ParametrizedLinear(
                      in_features=1024, out_features=4096, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                    (fc2): ParametrizedLinear(
                      in_features=4096, out_features=1024, bias=True
                      (parametrizations): ModuleDict(
                        (weight): ParametrizationList(
                          (0): LoRAParametrization()
                        )
                      )
                    )
                  )
                  (dropout2): Dropout(p=0.1, inplace=False)
                  (drop_path2): StochasticDepth(p=0.0, mode=row)
                  (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
                )
              )
            )
          )
        )
        (pooler): MeanPooler()
        (proj): Identity()
      )
      (vision_model): EVAVisionTransformer(
        (patch_embed): PatchEmbed(
          (proj): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14))
        )
        (pos_drop): Dropout(p=0.0, inplace=False)
        (rope): VisionRotaryEmbeddingFast()
        (blocks): ModuleList(
          (0-23): 24 x Block(
            (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (attn): Attention(
              (q_proj): Linear(in_features=1024, out_features=1024, bias=False)
              (k_proj): Linear(in_features=1024, out_features=1024, bias=False)
              (v_proj): Linear(in_features=1024, out_features=1024, bias=False)
              (attn_drop): Dropout(p=0.0, inplace=False)
              (inner_attn_ln): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
              (proj): Linear(in_features=1024, out_features=1024, bias=True)
              (proj_drop): Dropout(p=0.0, inplace=False)
              (rope): VisionRotaryEmbeddingFast()
            )
            (drop_path): Identity()
            (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
            (mlp): SwiGLU(
              (w1): Linear(in_features=1024, out_features=2730, bias=True)
              (w2): Linear(in_features=1024, out_features=2730, bias=True)
              (act): SiLU()
              (ffn_ln): LayerNorm((2730,), eps=1e-06, elementwise_affine=True)
              (w3): Linear(in_features=2730, out_features=1024, bias=True)
              (drop): Dropout(p=0.0, inplace=False)
            )
          )
        )
        (norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
        (head): Identity()
        (patch_dropout): PatchDropout()
      )
      (visual_projection): Identity()
      (text_projection): Identity()
    )
  )
  (normalizer): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("seregadgl/t12")
# Run inference
sentences = [
    'honor watch gs pro black ',
    'honor watch gs pro white ',
    'трансформер pituso carlo hb gy 06 lemon',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4602
spearman_cosine 0.4874

Training Details

Training Dataset

Unnamed Dataset

  • Size: 63,802 training samples
  • Columns: doc, candidate, and label
  • Approximate statistics based on the first 1000 samples:
    doc candidate label
    type string string int
    details
    • min: 5 characters
    • mean: 40.56 characters
    • max: 115 characters
    • min: 4 characters
    • mean: 40.11 characters
    • max: 115 characters
    • 0: ~85.20%
    • 1: ~14.80%
  • Samples:
    doc candidate label
    массажер xiaomi massage gun eu bhr5608eu перкуссионный массажер xiaomi massage gun mini bhr6083gl 0
    безударная дрель ingco ed50028 ударная дрель ingco id211002 0
    жидкость old smuggler 30мл 20мг жидкость old smuggler salt 30ml marlboro 20mg 0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 7,090 evaluation samples
  • Columns: doc, candidate, and label
  • Approximate statistics based on the first 1000 samples:
    doc candidate label
    type string string int
    details
    • min: 4 characters
    • mean: 40.68 characters
    • max: 198 characters
    • min: 5 characters
    • mean: 39.92 characters
    • max: 178 characters
    • 0: ~84.20%
    • 1: ~15.80%
  • Samples:
    doc candidate label
    круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик пироженко круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик клубника 0
    аккумулятор батарея для ноутбука asus g751 аккумулятор батарея для ноутбука asus g75 series 0
    миксер bosch mfq3520 mfq 3520 миксер bosch mfq 4020 0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss example-dev_spearman_cosine
0 0 - - 0.0849
0.1254 500 3.7498 3.0315 0.3797
0.2508 1000 2.7653 2.7538 0.4508
0.3761 1500 2.5938 2.7853 0.4689
0.5015 2000 2.6425 2.6761 0.4800
0.6269 2500 2.6859 2.6341 0.4840
0.7523 3000 2.5805 2.6350 0.4855
0.8776 3500 2.7247 2.6087 0.4874

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.4.0
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for seregadgl/t12

Finetuned
(2)
this model

Evaluation results