bertweet-large-afr-DAPT-finetuned-10-epochs
This model is a fine-tuned version of vinai/bertweet-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2340
- F1: 0.8417
- Roc Auc: 0.8875
- Accuracy: 0.7143
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.5581 | 1.0 | 81 | 0.5072 | 0.0737 | 0.5130 | 0.1693 |
0.4399 | 2.0 | 162 | 0.3615 | 0.5328 | 0.7054 | 0.3214 |
0.262 | 3.0 | 243 | 0.2506 | 0.8256 | 0.8683 | 0.6522 |
0.2257 | 4.0 | 324 | 0.2196 | 0.8401 | 0.8812 | 0.6941 |
0.1782 | 5.0 | 405 | 0.2175 | 0.8404 | 0.8834 | 0.6957 |
0.1663 | 6.0 | 486 | 0.2077 | 0.8368 | 0.8823 | 0.7019 |
0.1161 | 7.0 | 567 | 0.2340 | 0.8417 | 0.8875 | 0.7143 |
0.0955 | 8.0 | 648 | 0.2449 | 0.8352 | 0.8835 | 0.6925 |
0.0896 | 9.0 | 729 | 0.2463 | 0.8350 | 0.8821 | 0.6925 |
0.0621 | 10.0 | 810 | 0.2490 | 0.8359 | 0.8848 | 0.6941 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for sercetexam9/bertweet-large-afr-DAPT-finetuned-10-epochs
Base model
vinai/bertweet-large