SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/gte-noneg-bs512-lr5e-5-1000")
# Run inference
sentences = [
'LPGA 투어에서 고진영이 컷 탈락을 기록한 건 얼마나 돼',
'여자골프 세계랭킹 1위 고진영(26)이 미국여자프로골프(LPGA) 투어 드라이브온 챔피언십(총상금 150만 달러)에서 컷 탈락했다. 고진영은 6일(한국시간) 미국 플로리다주 오칼라의 골든 오칼라 골프 클럽(파72ㆍ6,526야드)에서 열린 대회 2라운드에서 버디와 보기 하나씩을 묶어 이븐파 72타를 쳤다. 1라운드 3오버파 75타로 공동 86위에 그쳤던 고진영은 이틀간 합계 3오버파 147타로 공동 72위에 머물러 컷을 통과하지 못했다. 컷은 2오버파 146타였다. 고진영이 LPGA 투어 대회에서 컷 탈락한 건 세 번째다. 앞서 2017년 3월 ANA 인스피레이션, 2018년 8월 브리티시여자오픈에서 컷을 통과하지 못했다. 그리고 2년 7개월 만에 또 한 번 컷 탈락이 기록됐다. 이날 2라운드는 10번 홀에서 시작, 15번 홀(파3) 버디를 잡아냈으나 17번 홀(파4) 보기를 써내 전반 타수를 줄이지 못했고, 후반엔 9개 홀 모두 파를 기록했다. 그는 이날 페어웨이는 한 번밖에 놓치지 않았으나 그린을 6차례 놓치고 퍼트 수가 30개에 달했다. 리더보드 맨 위엔 10언더파 134타의 제니퍼 컵초, 오스틴 언스트(이상 미국)가 이름을 올린 가운데 데일리 베스트인 7언더파를 몰아친 카를로타 시간다(스페인ㆍ8언더파 136타)가 두 타 차로 추격했다. 한국 선수 중에는 허미정(32)이 3언더파 141타, 공동 11위로 가장 좋은 성적을 냈다. 세계랭킹 2위 김세영(28)은 공동 17위(2언더파 142타), 전인지(27)는 공동 24위(1언더파 143타)에 자리했다. 정은(25)은 5타, 박성현(28)은 한 타를 잃고 공동 58위(2오버파 146타)에 올라 가까스로 컷을 통과했다.',
'1회용품 함께 줄이기 계획\nⅠ. 추진 배경\n□ (그간 추진 경과) ‘자원의 절약 및 재활용 촉진에 관한 법률’에 따라 1회용품 사용억제 제도 운영(1994~, 18개품목-18개업종)\no (성과) 「재활용 폐기물 관리 종합대책」(2018.5)을 수립하고 1회용컵, 비닐봉투 사용저감을 집중 추진하여 일정 감축성과 창출\n* 커피전문점 매장 내 1회용컵 75% 감소, 제과점 1회용 비닐봉투 84% 감소 등\no (한계) 그러나 국민이 체감할 변화는 아직 미흡하며, 비 규제 품목(빨대 등) 및 유형(배달 등)에 대한 관리 강화 요구 증가\n□ (해외 동향) 세계 각 국은 1회용품 사용을 저감하기 위한 중장기 로드맵을 발표하고, 국가별로 다양한 규제방안 도입\n* EU는 1회용 플라스틱 10대 품목 선정, 품목별 시장출시 금지 등 규제방안 마련\n** 미국 일부 州, 캐나다, 프랑스, 케냐, 칠레 등 1회용 비닐봉투 등 사용금지 도입',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 128per_device_eval_batch_size
: 128warmup_steps
: 100bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 100log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0011 | 1 | 0.4348 |
0.0021 | 2 | 0.4712 |
0.0032 | 3 | 0.4947 |
0.0042 | 4 | 0.4267 |
0.0053 | 5 | 0.4421 |
0.0064 | 6 | 0.4834 |
0.0074 | 7 | 0.4726 |
0.0085 | 8 | 0.4524 |
0.0096 | 9 | 0.4645 |
0.0106 | 10 | 0.4654 |
0.0117 | 11 | 0.4574 |
0.0127 | 12 | 0.5019 |
0.0138 | 13 | 0.4481 |
0.0149 | 14 | 0.423 |
0.0159 | 15 | 0.4694 |
0.0170 | 16 | 0.4316 |
0.0180 | 17 | 0.4372 |
0.0191 | 18 | 0.4623 |
0.0202 | 19 | 0.4222 |
0.0212 | 20 | 0.4494 |
0.0223 | 21 | 0.3932 |
0.0234 | 22 | 0.3924 |
0.0244 | 23 | 0.3869 |
0.0255 | 24 | 0.4064 |
0.0265 | 25 | 0.3945 |
0.0276 | 26 | 0.382 |
0.0287 | 27 | 0.3684 |
0.0297 | 28 | 0.3881 |
0.0308 | 29 | 0.3784 |
0.0318 | 30 | 0.3715 |
0.0329 | 31 | 0.34 |
0.0340 | 32 | 0.3421 |
0.0350 | 33 | 0.3678 |
0.0361 | 34 | 0.3489 |
0.0372 | 35 | 0.3112 |
0.0382 | 36 | 0.3137 |
0.0393 | 37 | 0.2928 |
0.0403 | 38 | 0.3053 |
0.0414 | 39 | 0.2838 |
0.0425 | 40 | 0.2638 |
0.0435 | 41 | 0.2827 |
0.0446 | 42 | 0.2372 |
0.0456 | 43 | 0.2635 |
0.0467 | 44 | 0.2749 |
0.0478 | 45 | 0.2381 |
0.0488 | 46 | 0.2113 |
0.0499 | 47 | 0.1914 |
0.0510 | 48 | 0.1944 |
0.0520 | 49 | 0.1863 |
0.0531 | 50 | 0.191 |
0.0541 | 51 | 0.1547 |
0.0552 | 52 | 0.1854 |
0.0563 | 53 | 0.1587 |
0.0573 | 54 | 0.1555 |
0.0584 | 55 | 0.1563 |
0.0594 | 56 | 0.1711 |
0.0605 | 57 | 0.1432 |
0.0616 | 58 | 0.1263 |
0.0626 | 59 | 0.1247 |
0.0637 | 60 | 0.1369 |
0.0648 | 61 | 0.1305 |
0.0658 | 62 | 0.1022 |
0.0669 | 63 | 0.1191 |
0.0679 | 64 | 0.1083 |
0.0690 | 65 | 0.0936 |
0.0701 | 66 | 0.0988 |
0.0711 | 67 | 0.0942 |
0.0722 | 68 | 0.107 |
0.0732 | 69 | 0.0823 |
0.0743 | 70 | 0.0886 |
0.0754 | 71 | 0.1055 |
0.0764 | 72 | 0.1013 |
0.0775 | 73 | 0.0807 |
0.0786 | 74 | 0.0776 |
0.0796 | 75 | 0.0737 |
0.0807 | 76 | 0.0916 |
0.0817 | 77 | 0.0654 |
0.0828 | 78 | 0.0904 |
0.0839 | 79 | 0.0954 |
0.0849 | 80 | 0.0697 |
0.0860 | 81 | 0.0751 |
0.0870 | 82 | 0.0886 |
0.0881 | 83 | 0.0752 |
0.0892 | 84 | 0.0806 |
0.0902 | 85 | 0.0807 |
0.0913 | 86 | 0.0842 |
0.0924 | 87 | 0.0821 |
0.0934 | 88 | 0.0723 |
0.0945 | 89 | 0.0797 |
0.0955 | 90 | 0.0797 |
0.0966 | 91 | 0.0832 |
0.0977 | 92 | 0.0713 |
0.0987 | 93 | 0.0681 |
0.0998 | 94 | 0.0825 |
0.1008 | 95 | 0.0838 |
0.1019 | 96 | 0.0746 |
0.1030 | 97 | 0.0792 |
0.1040 | 98 | 0.0692 |
0.1051 | 99 | 0.0705 |
0.1062 | 100 | 0.0666 |
0.1072 | 101 | 0.0692 |
0.1083 | 102 | 0.0675 |
0.1093 | 103 | 0.0734 |
0.1104 | 104 | 0.072 |
0.1115 | 105 | 0.0565 |
0.1125 | 106 | 0.0663 |
0.1136 | 107 | 0.0789 |
0.1146 | 108 | 0.0605 |
0.1157 | 109 | 0.0671 |
0.1168 | 110 | 0.083 |
0.1178 | 111 | 0.071 |
0.1189 | 112 | 0.0759 |
0.1200 | 113 | 0.0604 |
0.1210 | 114 | 0.0682 |
0.1221 | 115 | 0.0531 |
0.1231 | 116 | 0.0779 |
0.1242 | 117 | 0.0646 |
0.1253 | 118 | 0.0621 |
0.1263 | 119 | 0.081 |
0.1274 | 120 | 0.0688 |
0.1285 | 121 | 0.055 |
0.1295 | 122 | 0.0513 |
0.1306 | 123 | 0.063 |
0.1316 | 124 | 0.0634 |
0.1327 | 125 | 0.075 |
0.1338 | 126 | 0.062 |
0.1348 | 127 | 0.0821 |
0.1359 | 128 | 0.0565 |
0.1369 | 129 | 0.0492 |
0.1380 | 130 | 0.0762 |
0.1391 | 131 | 0.0735 |
0.1401 | 132 | 0.069 |
0.1412 | 133 | 0.0619 |
0.1423 | 134 | 0.0789 |
0.1433 | 135 | 0.0621 |
0.1444 | 136 | 0.0568 |
0.1454 | 137 | 0.0717 |
0.1465 | 138 | 0.0764 |
0.1476 | 139 | 0.0502 |
0.1486 | 140 | 0.0626 |
0.1497 | 141 | 0.0615 |
0.1507 | 142 | 0.0555 |
0.1518 | 143 | 0.0674 |
0.1529 | 144 | 0.0635 |
0.1539 | 145 | 0.0553 |
0.1550 | 146 | 0.0525 |
0.1561 | 147 | 0.055 |
0.1571 | 148 | 0.0665 |
0.1582 | 149 | 0.0703 |
0.1592 | 150 | 0.0657 |
0.1603 | 151 | 0.0612 |
0.1614 | 152 | 0.0671 |
0.1624 | 153 | 0.059 |
0.1635 | 154 | 0.0636 |
0.1645 | 155 | 0.0753 |
0.1656 | 156 | 0.0931 |
0.1667 | 157 | 0.0531 |
0.1677 | 158 | 0.0558 |
0.1688 | 159 | 0.0599 |
0.1699 | 160 | 0.0501 |
0.1709 | 161 | 0.051 |
0.1720 | 162 | 0.0697 |
0.1730 | 163 | 0.074 |
0.1741 | 164 | 0.0607 |
0.1752 | 165 | 0.0611 |
0.1762 | 166 | 0.059 |
0.1773 | 167 | 0.073 |
0.1783 | 168 | 0.0541 |
0.1794 | 169 | 0.0576 |
0.1805 | 170 | 0.0656 |
0.1815 | 171 | 0.0499 |
0.1826 | 172 | 0.055 |
0.1837 | 173 | 0.0646 |
0.1847 | 174 | 0.0747 |
0.1858 | 175 | 0.0558 |
0.1868 | 176 | 0.0537 |
0.1879 | 177 | 0.0574 |
0.1890 | 178 | 0.061 |
0.1900 | 179 | 0.0743 |
0.1911 | 180 | 0.0553 |
0.1921 | 181 | 0.0603 |
0.1932 | 182 | 0.0613 |
0.1943 | 183 | 0.0557 |
0.1953 | 184 | 0.0629 |
0.1964 | 185 | 0.0524 |
0.1975 | 186 | 0.0533 |
0.1985 | 187 | 0.0624 |
0.1996 | 188 | 0.0566 |
0.2006 | 189 | 0.0446 |
0.2017 | 190 | 0.0578 |
0.2028 | 191 | 0.0487 |
0.2038 | 192 | 0.066 |
0.2049 | 193 | 0.0618 |
0.2059 | 194 | 0.0591 |
0.2070 | 195 | 0.0553 |
0.2081 | 196 | 0.052 |
0.2091 | 197 | 0.0451 |
0.2102 | 198 | 0.0633 |
0.2113 | 199 | 0.0658 |
0.2123 | 200 | 0.0623 |
0.2134 | 201 | 0.0593 |
0.2144 | 202 | 0.0491 |
0.2155 | 203 | 0.0526 |
0.2166 | 204 | 0.057 |
0.2176 | 205 | 0.0631 |
0.2187 | 206 | 0.0809 |
0.2197 | 207 | 0.063 |
0.2208 | 208 | 0.0571 |
0.2219 | 209 | 0.054 |
0.2229 | 210 | 0.0607 |
0.2240 | 211 | 0.056 |
0.2251 | 212 | 0.06 |
0.2261 | 213 | 0.0597 |
0.2272 | 214 | 0.0538 |
0.2282 | 215 | 0.0584 |
0.2293 | 216 | 0.0473 |
0.2304 | 217 | 0.052 |
0.2314 | 218 | 0.06 |
0.2325 | 219 | 0.0566 |
0.2335 | 220 | 0.0559 |
0.2346 | 221 | 0.0536 |
0.2357 | 222 | 0.0634 |
0.2367 | 223 | 0.0637 |
0.2378 | 224 | 0.056 |
0.2389 | 225 | 0.0504 |
0.2399 | 226 | 0.0371 |
0.2410 | 227 | 0.0678 |
0.2420 | 228 | 0.0569 |
0.2431 | 229 | 0.0551 |
0.2442 | 230 | 0.0486 |
0.2452 | 231 | 0.0536 |
0.2463 | 232 | 0.0615 |
0.2473 | 233 | 0.0535 |
0.2484 | 234 | 0.0502 |
0.2495 | 235 | 0.0571 |
0.2505 | 236 | 0.0593 |
0.2516 | 237 | 0.0557 |
0.2527 | 238 | 0.0671 |
0.2537 | 239 | 0.0609 |
0.2548 | 240 | 0.0667 |
0.2558 | 241 | 0.064 |
0.2569 | 242 | 0.0503 |
0.2580 | 243 | 0.0461 |
0.2590 | 244 | 0.059 |
0.2601 | 245 | 0.0594 |
0.2611 | 246 | 0.0577 |
0.2622 | 247 | 0.0664 |
0.2633 | 248 | 0.0736 |
0.2643 | 249 | 0.0506 |
0.2654 | 250 | 0.0611 |
0.2665 | 251 | 0.0657 |
0.2675 | 252 | 0.0543 |
0.2686 | 253 | 0.0595 |
0.2696 | 254 | 0.0531 |
0.2707 | 255 | 0.0552 |
0.2718 | 256 | 0.061 |
0.2728 | 257 | 0.0456 |
0.2739 | 258 | 0.0498 |
0.2749 | 259 | 0.0567 |
0.2760 | 260 | 0.0444 |
0.2771 | 261 | 0.0567 |
0.2781 | 262 | 0.0524 |
0.2792 | 263 | 0.0518 |
0.2803 | 264 | 0.0664 |
0.2813 | 265 | 0.0537 |
0.2824 | 266 | 0.0537 |
0.2834 | 267 | 0.0558 |
0.2845 | 268 | 0.0501 |
0.2856 | 269 | 0.0558 |
0.2866 | 270 | 0.0411 |
0.2877 | 271 | 0.0432 |
0.2887 | 272 | 0.0535 |
0.2898 | 273 | 0.0511 |
0.2909 | 274 | 0.0469 |
0.2919 | 275 | 0.0587 |
0.2930 | 276 | 0.052 |
0.2941 | 277 | 0.0594 |
0.2951 | 278 | 0.0651 |
0.2962 | 279 | 0.0486 |
0.2972 | 280 | 0.0602 |
0.2983 | 281 | 0.0567 |
0.2994 | 282 | 0.0547 |
0.3004 | 283 | 0.0669 |
0.3015 | 284 | 0.0543 |
0.3025 | 285 | 0.0616 |
0.3036 | 286 | 0.0532 |
0.3047 | 287 | 0.0689 |
0.3057 | 288 | 0.0461 |
0.3068 | 289 | 0.0516 |
0.3079 | 290 | 0.0496 |
0.3089 | 291 | 0.0581 |
0.3100 | 292 | 0.0446 |
0.3110 | 293 | 0.048 |
0.3121 | 294 | 0.0442 |
0.3132 | 295 | 0.0504 |
0.3142 | 296 | 0.0531 |
0.3153 | 297 | 0.0681 |
0.3163 | 298 | 0.0458 |
0.3174 | 299 | 0.0584 |
0.3185 | 300 | 0.064 |
0.3195 | 301 | 0.0595 |
0.3206 | 302 | 0.0604 |
0.3217 | 303 | 0.0621 |
0.3227 | 304 | 0.0466 |
0.3238 | 305 | 0.0545 |
0.3248 | 306 | 0.0523 |
0.3259 | 307 | 0.0496 |
0.3270 | 308 | 0.0468 |
0.3280 | 309 | 0.0649 |
0.3291 | 310 | 0.056 |
0.3301 | 311 | 0.0539 |
0.3312 | 312 | 0.0497 |
0.3323 | 313 | 0.0517 |
0.3333 | 314 | 0.0511 |
0.3344 | 315 | 0.0511 |
0.3355 | 316 | 0.0518 |
0.3365 | 317 | 0.0508 |
0.3376 | 318 | 0.0579 |
0.3386 | 319 | 0.0463 |
0.3397 | 320 | 0.046 |
0.3408 | 321 | 0.0461 |
0.3418 | 322 | 0.0469 |
0.3429 | 323 | 0.0399 |
0.3439 | 324 | 0.0516 |
0.3450 | 325 | 0.0551 |
0.3461 | 326 | 0.0497 |
0.3471 | 327 | 0.0455 |
0.3482 | 328 | 0.0534 |
0.3493 | 329 | 0.0437 |
0.3503 | 330 | 0.0542 |
0.3514 | 331 | 0.0462 |
0.3524 | 332 | 0.0429 |
0.3535 | 333 | 0.0542 |
0.3546 | 334 | 0.0452 |
0.3556 | 335 | 0.0569 |
0.3567 | 336 | 0.0495 |
0.3577 | 337 | 0.0443 |
0.3588 | 338 | 0.0543 |
0.3599 | 339 | 0.0671 |
0.3609 | 340 | 0.054 |
0.3620 | 341 | 0.0596 |
0.3631 | 342 | 0.0468 |
0.3641 | 343 | 0.0644 |
0.3652 | 344 | 0.044 |
0.3662 | 345 | 0.0477 |
0.3673 | 346 | 0.0403 |
0.3684 | 347 | 0.0553 |
0.3694 | 348 | 0.0533 |
0.3705 | 349 | 0.0447 |
0.3715 | 350 | 0.0527 |
0.3726 | 351 | 0.0465 |
0.3737 | 352 | 0.0518 |
0.3747 | 353 | 0.0345 |
0.3758 | 354 | 0.0515 |
0.3769 | 355 | 0.0438 |
0.3779 | 356 | 0.0489 |
0.3790 | 357 | 0.046 |
0.3800 | 358 | 0.0621 |
0.3811 | 359 | 0.0667 |
0.3822 | 360 | 0.0489 |
0.3832 | 361 | 0.0555 |
0.3843 | 362 | 0.0445 |
0.3854 | 363 | 0.0492 |
0.3864 | 364 | 0.0562 |
0.3875 | 365 | 0.0484 |
0.3885 | 366 | 0.0582 |
0.3896 | 367 | 0.0551 |
0.3907 | 368 | 0.0512 |
0.3917 | 369 | 0.0486 |
0.3928 | 370 | 0.0537 |
0.3938 | 371 | 0.0499 |
0.3949 | 372 | 0.0651 |
0.3960 | 373 | 0.0531 |
0.3970 | 374 | 0.0743 |
0.3981 | 375 | 0.052 |
0.3992 | 376 | 0.0476 |
0.4002 | 377 | 0.0572 |
0.4013 | 378 | 0.0555 |
0.4023 | 379 | 0.0569 |
0.4034 | 380 | 0.052 |
0.4045 | 381 | 0.0524 |
0.4055 | 382 | 0.0726 |
0.4066 | 383 | 0.0456 |
0.4076 | 384 | 0.0531 |
0.4087 | 385 | 0.0474 |
0.4098 | 386 | 0.0485 |
0.4108 | 387 | 0.0459 |
0.4119 | 388 | 0.0474 |
0.4130 | 389 | 0.0541 |
0.4140 | 390 | 0.0452 |
0.4151 | 391 | 0.0362 |
0.4161 | 392 | 0.0407 |
0.4172 | 393 | 0.0449 |
0.4183 | 394 | 0.0444 |
0.4193 | 395 | 0.0469 |
0.4204 | 396 | 0.0493 |
0.4214 | 397 | 0.0437 |
0.4225 | 398 | 0.0551 |
0.4236 | 399 | 0.0412 |
0.4246 | 400 | 0.0401 |
0.4257 | 401 | 0.0488 |
0.4268 | 402 | 0.0506 |
0.4278 | 403 | 0.0458 |
0.4289 | 404 | 0.0436 |
0.4299 | 405 | 0.0574 |
0.4310 | 406 | 0.0516 |
0.4321 | 407 | 0.0599 |
0.4331 | 408 | 0.0476 |
0.4342 | 409 | 0.0462 |
0.4352 | 410 | 0.0502 |
0.4363 | 411 | 0.0448 |
0.4374 | 412 | 0.0461 |
0.4384 | 413 | 0.035 |
0.4395 | 414 | 0.0451 |
0.4406 | 415 | 0.0456 |
0.4416 | 416 | 0.0399 |
0.4427 | 417 | 0.0602 |
0.4437 | 418 | 0.0588 |
0.4448 | 419 | 0.0675 |
0.4459 | 420 | 0.0628 |
0.4469 | 421 | 0.0498 |
0.4480 | 422 | 0.0413 |
0.4490 | 423 | 0.0437 |
0.4501 | 424 | 0.0514 |
0.4512 | 425 | 0.0586 |
0.4522 | 426 | 0.0596 |
0.4533 | 427 | 0.0368 |
0.4544 | 428 | 0.0448 |
0.4554 | 429 | 0.056 |
0.4565 | 430 | 0.0415 |
0.4575 | 431 | 0.0448 |
0.4586 | 432 | 0.055 |
0.4597 | 433 | 0.0442 |
0.4607 | 434 | 0.0462 |
0.4618 | 435 | 0.0479 |
0.4628 | 436 | 0.0507 |
0.4639 | 437 | 0.049 |
0.4650 | 438 | 0.0626 |
0.4660 | 439 | 0.0375 |
0.4671 | 440 | 0.0541 |
0.4682 | 441 | 0.0579 |
0.4692 | 442 | 0.0642 |
0.4703 | 443 | 0.0471 |
0.4713 | 444 | 0.0559 |
0.4724 | 445 | 0.0508 |
0.4735 | 446 | 0.0696 |
0.4745 | 447 | 0.056 |
0.4756 | 448 | 0.0649 |
0.4766 | 449 | 0.0641 |
0.4777 | 450 | 0.0547 |
0.4788 | 451 | 0.0509 |
0.4798 | 452 | 0.0544 |
0.4809 | 453 | 0.0487 |
0.4820 | 454 | 0.0639 |
0.4830 | 455 | 0.047 |
0.4841 | 456 | 0.0513 |
0.4851 | 457 | 0.0451 |
0.4862 | 458 | 0.0567 |
0.4873 | 459 | 0.0541 |
0.4883 | 460 | 0.0475 |
0.4894 | 461 | 0.0445 |
0.4904 | 462 | 0.0597 |
0.4915 | 463 | 0.0434 |
0.4926 | 464 | 0.0468 |
0.4936 | 465 | 0.0449 |
0.4947 | 466 | 0.0422 |
0.4958 | 467 | 0.0504 |
0.4968 | 468 | 0.0565 |
0.4979 | 469 | 0.0611 |
0.4989 | 470 | 0.044 |
0.5 | 471 | 0.0543 |
0.5011 | 472 | 0.0424 |
0.5021 | 473 | 0.0443 |
0.5032 | 474 | 0.0367 |
0.5042 | 475 | 0.0427 |
0.5053 | 476 | 0.0431 |
0.5064 | 477 | 0.063 |
0.5074 | 478 | 0.0421 |
0.5085 | 479 | 0.0367 |
0.5096 | 480 | 0.0456 |
0.5106 | 481 | 0.0586 |
0.5117 | 482 | 0.0747 |
0.5127 | 483 | 0.05 |
0.5138 | 484 | 0.0509 |
0.5149 | 485 | 0.054 |
0.5159 | 486 | 0.0531 |
0.5170 | 487 | 0.0458 |
0.5180 | 488 | 0.0522 |
0.5191 | 489 | 0.0406 |
0.5202 | 490 | 0.0529 |
0.5212 | 491 | 0.0602 |
0.5223 | 492 | 0.0469 |
0.5234 | 493 | 0.0602 |
0.5244 | 494 | 0.0506 |
0.5255 | 495 | 0.0522 |
0.5265 | 496 | 0.0433 |
0.5276 | 497 | 0.0531 |
0.5287 | 498 | 0.0453 |
0.5297 | 499 | 0.0416 |
0.5308 | 500 | 0.0366 |
0.5318 | 501 | 0.0483 |
0.5329 | 502 | 0.0453 |
0.5340 | 503 | 0.0495 |
0.5350 | 504 | 0.0522 |
0.5361 | 505 | 0.0476 |
0.5372 | 506 | 0.0416 |
0.5382 | 507 | 0.0497 |
0.5393 | 508 | 0.0431 |
0.5403 | 509 | 0.0494 |
0.5414 | 510 | 0.041 |
0.5425 | 511 | 0.0412 |
0.5435 | 512 | 0.0399 |
0.5446 | 513 | 0.0478 |
0.5456 | 514 | 0.061 |
0.5467 | 515 | 0.0353 |
0.5478 | 516 | 0.0469 |
0.5488 | 517 | 0.0517 |
0.5499 | 518 | 0.0523 |
0.5510 | 519 | 0.058 |
0.5520 | 520 | 0.0432 |
0.5531 | 521 | 0.0442 |
0.5541 | 522 | 0.0551 |
0.5552 | 523 | 0.0488 |
0.5563 | 524 | 0.0482 |
0.5573 | 525 | 0.0474 |
0.5584 | 526 | 0.0577 |
0.5594 | 527 | 0.0375 |
0.5605 | 528 | 0.0401 |
0.5616 | 529 | 0.0574 |
0.5626 | 530 | 0.0496 |
0.5637 | 531 | 0.0422 |
0.5648 | 532 | 0.047 |
0.5658 | 533 | 0.0455 |
0.5669 | 534 | 0.0405 |
0.5679 | 535 | 0.0391 |
0.5690 | 536 | 0.0495 |
0.5701 | 537 | 0.0464 |
0.5711 | 538 | 0.0457 |
0.5722 | 539 | 0.0449 |
0.5732 | 540 | 0.0583 |
0.5743 | 541 | 0.0591 |
0.5754 | 542 | 0.0487 |
0.5764 | 543 | 0.0456 |
0.5775 | 544 | 0.0423 |
0.5786 | 545 | 0.0571 |
0.5796 | 546 | 0.0472 |
0.5807 | 547 | 0.0556 |
0.5817 | 548 | 0.0483 |
0.5828 | 549 | 0.0424 |
0.5839 | 550 | 0.0557 |
0.5849 | 551 | 0.038 |
0.5860 | 552 | 0.0394 |
0.5870 | 553 | 0.0481 |
0.5881 | 554 | 0.0617 |
0.5892 | 555 | 0.0455 |
0.5902 | 556 | 0.0411 |
0.5913 | 557 | 0.0433 |
0.5924 | 558 | 0.0456 |
0.5934 | 559 | 0.0488 |
0.5945 | 560 | 0.0517 |
0.5955 | 561 | 0.0549 |
0.5966 | 562 | 0.0406 |
0.5977 | 563 | 0.045 |
0.5987 | 564 | 0.049 |
0.5998 | 565 | 0.0547 |
0.6008 | 566 | 0.0529 |
0.6019 | 567 | 0.0524 |
0.6030 | 568 | 0.0472 |
0.6040 | 569 | 0.039 |
0.6051 | 570 | 0.041 |
0.6062 | 571 | 0.0508 |
0.6072 | 572 | 0.0486 |
0.6083 | 573 | 0.0375 |
0.6093 | 574 | 0.0585 |
0.6104 | 575 | 0.05 |
0.6115 | 576 | 0.0509 |
0.6125 | 577 | 0.0394 |
0.6136 | 578 | 0.0467 |
0.6146 | 579 | 0.0371 |
0.6157 | 580 | 0.0415 |
0.6168 | 581 | 0.046 |
0.6178 | 582 | 0.0385 |
0.6189 | 583 | 0.056 |
0.6200 | 584 | 0.0416 |
0.6210 | 585 | 0.0578 |
0.6221 | 586 | 0.0443 |
0.6231 | 587 | 0.0407 |
0.6242 | 588 | 0.0499 |
0.6253 | 589 | 0.056 |
0.6263 | 590 | 0.0456 |
0.6274 | 591 | 0.0412 |
0.6285 | 592 | 0.0473 |
0.6295 | 593 | 0.0378 |
0.6306 | 594 | 0.0544 |
0.6316 | 595 | 0.0502 |
0.6327 | 596 | 0.042 |
0.6338 | 597 | 0.0414 |
0.6348 | 598 | 0.0506 |
0.6359 | 599 | 0.0372 |
0.6369 | 600 | 0.0411 |
0.6380 | 601 | 0.0387 |
0.6391 | 602 | 0.0588 |
0.6401 | 603 | 0.0404 |
0.6412 | 604 | 0.056 |
0.6423 | 605 | 0.0524 |
0.6433 | 606 | 0.0484 |
0.6444 | 607 | 0.0398 |
0.6454 | 608 | 0.0523 |
0.6465 | 609 | 0.0469 |
0.6476 | 610 | 0.0504 |
0.6486 | 611 | 0.0496 |
0.6497 | 612 | 0.0501 |
0.6507 | 613 | 0.0426 |
0.6518 | 614 | 0.0454 |
0.6529 | 615 | 0.0564 |
0.6539 | 616 | 0.0798 |
0.6550 | 617 | 0.0444 |
0.6561 | 618 | 0.039 |
0.6571 | 619 | 0.0428 |
0.6582 | 620 | 0.0504 |
0.6592 | 621 | 0.0525 |
0.6603 | 622 | 0.0471 |
0.6614 | 623 | 0.0402 |
0.6624 | 624 | 0.0456 |
0.6635 | 625 | 0.0384 |
0.6645 | 626 | 0.0446 |
0.6656 | 627 | 0.0468 |
0.6667 | 628 | 0.047 |
0.6677 | 629 | 0.0442 |
0.6688 | 630 | 0.0466 |
0.6699 | 631 | 0.0457 |
0.6709 | 632 | 0.0538 |
0.6720 | 633 | 0.0434 |
0.6730 | 634 | 0.0443 |
0.6741 | 635 | 0.0481 |
0.6752 | 636 | 0.0483 |
0.6762 | 637 | 0.0434 |
0.6773 | 638 | 0.0389 |
0.6783 | 639 | 0.0541 |
0.6794 | 640 | 0.0453 |
0.6805 | 641 | 0.0508 |
0.6815 | 642 | 0.0469 |
0.6826 | 643 | 0.0431 |
0.6837 | 644 | 0.0446 |
0.6847 | 645 | 0.0427 |
0.6858 | 646 | 0.0543 |
0.6868 | 647 | 0.0458 |
0.6879 | 648 | 0.046 |
0.6890 | 649 | 0.0669 |
0.6900 | 650 | 0.046 |
0.6911 | 651 | 0.0462 |
0.6921 | 652 | 0.0493 |
0.6932 | 653 | 0.0484 |
0.6943 | 654 | 0.0466 |
0.6953 | 655 | 0.048 |
0.6964 | 656 | 0.0406 |
0.6975 | 657 | 0.0512 |
0.6985 | 658 | 0.0469 |
0.6996 | 659 | 0.0461 |
0.7006 | 660 | 0.039 |
0.7017 | 661 | 0.0403 |
0.7028 | 662 | 0.0419 |
0.7038 | 663 | 0.0538 |
0.7049 | 664 | 0.0364 |
0.7059 | 665 | 0.039 |
0.7070 | 666 | 0.0417 |
0.7081 | 667 | 0.0478 |
0.7091 | 668 | 0.0443 |
0.7102 | 669 | 0.0394 |
0.7113 | 670 | 0.0417 |
0.7123 | 671 | 0.0412 |
0.7134 | 672 | 0.0493 |
0.7144 | 673 | 0.0532 |
0.7155 | 674 | 0.0371 |
0.7166 | 675 | 0.0344 |
0.7176 | 676 | 0.0421 |
0.7187 | 677 | 0.0489 |
0.7197 | 678 | 0.0362 |
0.7208 | 679 | 0.0539 |
0.7219 | 680 | 0.0404 |
0.7229 | 681 | 0.0607 |
0.7240 | 682 | 0.0456 |
0.7251 | 683 | 0.0507 |
0.7261 | 684 | 0.0415 |
0.7272 | 685 | 0.0361 |
0.7282 | 686 | 0.053 |
0.7293 | 687 | 0.0431 |
0.7304 | 688 | 0.0463 |
0.7314 | 689 | 0.0401 |
0.7325 | 690 | 0.0549 |
0.7335 | 691 | 0.0335 |
0.7346 | 692 | 0.05 |
0.7357 | 693 | 0.0472 |
0.7367 | 694 | 0.0474 |
0.7378 | 695 | 0.0556 |
0.7389 | 696 | 0.0456 |
0.7399 | 697 | 0.0481 |
0.7410 | 698 | 0.0388 |
0.7420 | 699 | 0.0381 |
0.7431 | 700 | 0.0491 |
0.7442 | 701 | 0.0436 |
0.7452 | 702 | 0.0522 |
0.7463 | 703 | 0.0471 |
0.7473 | 704 | 0.0367 |
0.7484 | 705 | 0.0393 |
0.7495 | 706 | 0.0418 |
0.7505 | 707 | 0.0371 |
0.7516 | 708 | 0.0315 |
0.7527 | 709 | 0.0508 |
0.7537 | 710 | 0.0535 |
0.7548 | 711 | 0.0453 |
0.7558 | 712 | 0.0352 |
0.7569 | 713 | 0.0507 |
0.7580 | 714 | 0.046 |
0.7590 | 715 | 0.0393 |
0.7601 | 716 | 0.0453 |
0.7611 | 717 | 0.0403 |
0.7622 | 718 | 0.0346 |
0.7633 | 719 | 0.0492 |
0.7643 | 720 | 0.0437 |
0.7654 | 721 | 0.042 |
0.7665 | 722 | 0.052 |
0.7675 | 723 | 0.043 |
0.7686 | 724 | 0.0524 |
0.7696 | 725 | 0.0385 |
0.7707 | 726 | 0.0484 |
0.7718 | 727 | 0.0454 |
0.7728 | 728 | 0.0478 |
0.7739 | 729 | 0.0411 |
0.7749 | 730 | 0.0415 |
0.7760 | 731 | 0.0323 |
0.7771 | 732 | 0.0492 |
0.7781 | 733 | 0.0429 |
0.7792 | 734 | 0.0445 |
0.7803 | 735 | 0.0484 |
0.7813 | 736 | 0.042 |
0.7824 | 737 | 0.0486 |
0.7834 | 738 | 0.0349 |
0.7845 | 739 | 0.0472 |
0.7856 | 740 | 0.0413 |
0.7866 | 741 | 0.0476 |
0.7877 | 742 | 0.0519 |
0.7887 | 743 | 0.0405 |
0.7898 | 744 | 0.0439 |
0.7909 | 745 | 0.035 |
0.7919 | 746 | 0.0478 |
0.7930 | 747 | 0.0476 |
0.7941 | 748 | 0.0382 |
0.7951 | 749 | 0.0568 |
0.7962 | 750 | 0.0505 |
0.7972 | 751 | 0.0572 |
0.7983 | 752 | 0.0352 |
0.7994 | 753 | 0.0405 |
0.8004 | 754 | 0.0505 |
0.8015 | 755 | 0.0478 |
0.8025 | 756 | 0.0465 |
0.8036 | 757 | 0.0493 |
0.8047 | 758 | 0.0414 |
0.8057 | 759 | 0.0438 |
0.8068 | 760 | 0.0559 |
0.8079 | 761 | 0.044 |
0.8089 | 762 | 0.0385 |
0.8100 | 763 | 0.0414 |
0.8110 | 764 | 0.0516 |
0.8121 | 765 | 0.0475 |
0.8132 | 766 | 0.0394 |
0.8142 | 767 | 0.0566 |
0.8153 | 768 | 0.0385 |
0.8163 | 769 | 0.0405 |
0.8174 | 770 | 0.0392 |
0.8185 | 771 | 0.0364 |
0.8195 | 772 | 0.0501 |
0.8206 | 773 | 0.0462 |
0.8217 | 774 | 0.0436 |
0.8227 | 775 | 0.0548 |
0.8238 | 776 | 0.0429 |
0.8248 | 777 | 0.0416 |
0.8259 | 778 | 0.043 |
0.8270 | 779 | 0.0481 |
0.8280 | 780 | 0.0382 |
0.8291 | 781 | 0.0439 |
0.8301 | 782 | 0.0369 |
0.8312 | 783 | 0.0377 |
0.8323 | 784 | 0.0463 |
0.8333 | 785 | 0.0372 |
0.8344 | 786 | 0.0563 |
0.8355 | 787 | 0.0447 |
0.8365 | 788 | 0.0366 |
0.8376 | 789 | 0.0466 |
0.8386 | 790 | 0.049 |
0.8397 | 791 | 0.0557 |
0.8408 | 792 | 0.0495 |
0.8418 | 793 | 0.0359 |
0.8429 | 794 | 0.0519 |
0.8439 | 795 | 0.0538 |
0.8450 | 796 | 0.0388 |
0.8461 | 797 | 0.0431 |
0.8471 | 798 | 0.0513 |
0.8482 | 799 | 0.047 |
0.8493 | 800 | 0.0485 |
0.8503 | 801 | 0.052 |
0.8514 | 802 | 0.032 |
0.8524 | 803 | 0.0419 |
0.8535 | 804 | 0.0439 |
0.8546 | 805 | 0.0548 |
0.8556 | 806 | 0.0433 |
0.8567 | 807 | 0.0407 |
0.8577 | 808 | 0.0467 |
0.8588 | 809 | 0.0494 |
0.8599 | 810 | 0.0516 |
0.8609 | 811 | 0.0418 |
0.8620 | 812 | 0.0344 |
0.8631 | 813 | 0.0505 |
0.8641 | 814 | 0.0477 |
0.8652 | 815 | 0.0533 |
0.8662 | 816 | 0.0431 |
0.8673 | 817 | 0.0439 |
0.8684 | 818 | 0.0321 |
0.8694 | 819 | 0.0418 |
0.8705 | 820 | 0.043 |
0.8715 | 821 | 0.035 |
0.8726 | 822 | 0.0473 |
0.8737 | 823 | 0.0294 |
0.8747 | 824 | 0.0573 |
0.8758 | 825 | 0.038 |
0.8769 | 826 | 0.04 |
0.8779 | 827 | 0.0406 |
0.8790 | 828 | 0.0413 |
0.8800 | 829 | 0.0416 |
0.8811 | 830 | 0.0344 |
0.8822 | 831 | 0.0511 |
0.8832 | 832 | 0.0403 |
0.8843 | 833 | 0.0613 |
0.8854 | 834 | 0.0384 |
0.8864 | 835 | 0.0363 |
0.8875 | 836 | 0.0324 |
0.8885 | 837 | 0.0472 |
0.8896 | 838 | 0.049 |
0.8907 | 839 | 0.0465 |
0.8917 | 840 | 0.0419 |
0.8928 | 841 | 0.0455 |
0.8938 | 842 | 0.0481 |
0.8949 | 843 | 0.0463 |
0.8960 | 844 | 0.0352 |
0.8970 | 845 | 0.0527 |
0.8981 | 846 | 0.0561 |
0.8992 | 847 | 0.0381 |
0.9002 | 848 | 0.0434 |
0.9013 | 849 | 0.0436 |
0.9023 | 850 | 0.0462 |
0.9034 | 851 | 0.0503 |
0.9045 | 852 | 0.0479 |
0.9055 | 853 | 0.0451 |
0.9066 | 854 | 0.0459 |
0.9076 | 855 | 0.0508 |
0.9087 | 856 | 0.0453 |
0.9098 | 857 | 0.0444 |
0.9108 | 858 | 0.0461 |
0.9119 | 859 | 0.056 |
0.9130 | 860 | 0.0449 |
0.9140 | 861 | 0.0477 |
0.9151 | 862 | 0.0422 |
0.9161 | 863 | 0.0481 |
0.9172 | 864 | 0.0508 |
0.9183 | 865 | 0.037 |
0.9193 | 866 | 0.0491 |
0.9204 | 867 | 0.0627 |
0.9214 | 868 | 0.0432 |
0.9225 | 869 | 0.0377 |
0.9236 | 870 | 0.0448 |
0.9246 | 871 | 0.0366 |
0.9257 | 872 | 0.0406 |
0.9268 | 873 | 0.0445 |
0.9278 | 874 | 0.0424 |
0.9289 | 875 | 0.0322 |
0.9299 | 876 | 0.0441 |
0.9310 | 877 | 0.0498 |
0.9321 | 878 | 0.0418 |
0.9331 | 879 | 0.0524 |
0.9342 | 880 | 0.06 |
0.9352 | 881 | 0.0428 |
0.9363 | 882 | 0.0428 |
0.9374 | 883 | 0.0509 |
0.9384 | 884 | 0.0428 |
0.9395 | 885 | 0.0295 |
0.9406 | 886 | 0.0535 |
0.9416 | 887 | 0.04 |
0.9427 | 888 | 0.0425 |
0.9437 | 889 | 0.0583 |
0.9448 | 890 | 0.0374 |
0.9459 | 891 | 0.0489 |
0.9469 | 892 | 0.0472 |
0.9480 | 893 | 0.0449 |
0.9490 | 894 | 0.0342 |
0.9501 | 895 | 0.0604 |
0.9512 | 896 | 0.047 |
0.9522 | 897 | 0.0433 |
0.9533 | 898 | 0.0355 |
0.9544 | 899 | 0.0419 |
0.9554 | 900 | 0.044 |
0.9565 | 901 | 0.0457 |
0.9575 | 902 | 0.0377 |
0.9586 | 903 | 0.0416 |
0.9597 | 904 | 0.0505 |
0.9607 | 905 | 0.0487 |
0.9618 | 906 | 0.0473 |
0.9628 | 907 | 0.0521 |
0.9639 | 908 | 0.0336 |
0.9650 | 909 | 0.0446 |
0.9660 | 910 | 0.0423 |
0.9671 | 911 | 0.0442 |
0.9682 | 912 | 0.0505 |
0.9692 | 913 | 0.0488 |
0.9703 | 914 | 0.0367 |
0.9713 | 915 | 0.0382 |
0.9724 | 916 | 0.0487 |
0.9735 | 917 | 0.061 |
0.9745 | 918 | 0.0461 |
0.9756 | 919 | 0.0377 |
0.9766 | 920 | 0.0398 |
0.9777 | 921 | 0.0363 |
0.9788 | 922 | 0.0375 |
0.9798 | 923 | 0.0503 |
0.9809 | 924 | 0.0493 |
0.9820 | 925 | 0.04 |
0.9830 | 926 | 0.0379 |
0.9841 | 927 | 0.0422 |
0.9851 | 928 | 0.0517 |
0.9862 | 929 | 0.0488 |
0.9873 | 930 | 0.057 |
0.9883 | 931 | 0.0388 |
0.9894 | 932 | 0.0374 |
0.9904 | 933 | 0.0374 |
0.9915 | 934 | 0.0504 |
0.9926 | 935 | 0.056 |
0.9936 | 936 | 0.0478 |
0.9947 | 937 | 0.0286 |
0.9958 | 938 | 0.0415 |
0.9968 | 939 | 0.037 |
0.9979 | 940 | 0.0445 |
0.9989 | 941 | 0.0451 |
1.0 | 942 | 0.036 |
1.0011 | 943 | 0.0346 |
1.0021 | 944 | 0.044 |
1.0032 | 945 | 0.044 |
1.0042 | 946 | 0.0487 |
1.0053 | 947 | 0.0411 |
1.0064 | 948 | 0.0385 |
1.0074 | 949 | 0.0414 |
1.0085 | 950 | 0.0369 |
1.0096 | 951 | 0.0381 |
1.0106 | 952 | 0.0358 |
1.0117 | 953 | 0.0455 |
1.0127 | 954 | 0.0414 |
1.0138 | 955 | 0.0327 |
1.0149 | 956 | 0.0492 |
1.0159 | 957 | 0.0552 |
1.0170 | 958 | 0.0399 |
1.0180 | 959 | 0.0442 |
1.0191 | 960 | 0.0398 |
1.0202 | 961 | 0.0418 |
1.0212 | 962 | 0.037 |
1.0223 | 963 | 0.0433 |
1.0234 | 964 | 0.0405 |
1.0244 | 965 | 0.0429 |
1.0255 | 966 | 0.0364 |
1.0265 | 967 | 0.0424 |
1.0276 | 968 | 0.0419 |
1.0287 | 969 | 0.044 |
1.0297 | 970 | 0.0326 |
1.0308 | 971 | 0.0391 |
1.0318 | 972 | 0.0436 |
1.0329 | 973 | 0.0466 |
1.0340 | 974 | 0.0357 |
1.0350 | 975 | 0.0562 |
1.0361 | 976 | 0.0328 |
1.0372 | 977 | 0.0423 |
1.0382 | 978 | 0.0316 |
1.0393 | 979 | 0.0488 |
1.0403 | 980 | 0.0352 |
1.0414 | 981 | 0.0383 |
1.0425 | 982 | 0.0544 |
1.0435 | 983 | 0.0336 |
1.0446 | 984 | 0.0426 |
1.0456 | 985 | 0.0301 |
1.0467 | 986 | 0.048 |
1.0478 | 987 | 0.0398 |
1.0488 | 988 | 0.048 |
1.0499 | 989 | 0.0451 |
1.0510 | 990 | 0.0477 |
1.0520 | 991 | 0.0437 |
1.0531 | 992 | 0.0367 |
1.0541 | 993 | 0.0438 |
1.0552 | 994 | 0.0482 |
1.0563 | 995 | 0.0445 |
1.0573 | 996 | 0.0499 |
1.0584 | 997 | 0.0409 |
1.0594 | 998 | 0.0426 |
1.0605 | 999 | 0.0417 |
1.0616 | 1000 | 0.0498 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/gte-noneg-bs512-lr5e-5-1000
Base model
Alibaba-NLP/gte-multilingual-base