Edit model card

segformer-b1-finetuned-cityscapes-1024-1024-straighter-only-test

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0319
  • Mean Iou: 0.9378
  • Mean Accuracy: 0.9615
  • Overall Accuracy: 0.9895
  • Accuracy Default: 1e-06
  • Accuracy Pipe: 0.8987
  • Accuracy Floor: 0.9897
  • Accuracy Background: 0.9959
  • Iou Default: 1e-06
  • Iou Pipe: 0.8434
  • Iou Floor: 0.9813
  • Iou Background: 0.9889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Default Accuracy Pipe Accuracy Floor Accuracy Background Iou Default Iou Pipe Iou Floor Iou Background
0.3904 1.0 36 0.1465 0.8037 0.8484 0.9645 1e-06 0.5855 0.9696 0.9900 1e-06 0.5120 0.9355 0.9635
0.1244 2.0 72 0.0891 0.8640 0.9024 0.9766 1e-06 0.7371 0.9764 0.9938 1e-06 0.6565 0.9592 0.9762
0.0818 3.0 108 0.0669 0.8868 0.9178 0.9804 1e-06 0.7826 0.9745 0.9965 1e-06 0.7154 0.9657 0.9793
0.061 4.0 144 0.0525 0.9072 0.9407 0.9839 1e-06 0.8472 0.9801 0.9949 1e-06 0.7675 0.9711 0.9830
0.051 5.0 180 0.0470 0.9118 0.9444 0.9849 1e-06 0.8585 0.9790 0.9958 1e-06 0.7789 0.9722 0.9845
0.0461 6.0 216 0.0424 0.9191 0.9510 0.9861 1e-06 0.8736 0.9851 0.9944 1e-06 0.7959 0.9762 0.9851
0.0388 7.0 252 0.0401 0.9184 0.9443 0.9862 1e-06 0.8508 0.9862 0.9960 1e-06 0.7932 0.9769 0.9853
0.0348 8.0 288 0.0372 0.9244 0.9565 0.9870 1e-06 0.8894 0.9859 0.9943 1e-06 0.8104 0.9763 0.9865
0.0324 9.0 324 0.0362 0.9237 0.9486 0.9870 1e-06 0.8656 0.9833 0.9969 1e-06 0.8076 0.9773 0.9861
0.031 10.0 360 0.0349 0.9239 0.9520 0.9872 1e-06 0.8737 0.9870 0.9954 1e-06 0.8067 0.9788 0.9863
0.0287 11.0 396 0.0333 0.9285 0.9531 0.9877 1e-06 0.8720 0.9930 0.9944 1e-06 0.8209 0.9778 0.9868
0.0268 12.0 432 0.0332 0.9283 0.9522 0.9879 1e-06 0.8737 0.9865 0.9966 1e-06 0.8191 0.9787 0.9872
0.025 13.0 468 0.0311 0.9317 0.9622 0.9883 1e-06 0.9042 0.9877 0.9945 1e-06 0.8281 0.9794 0.9877
0.0247 14.0 504 0.0310 0.9308 0.9535 0.9884 1e-06 0.8742 0.9904 0.9959 1e-06 0.8247 0.9801 0.9876
0.0236 15.0 540 0.0307 0.9322 0.9538 0.9886 1e-06 0.8755 0.9897 0.9963 1e-06 0.8292 0.9793 0.9880
0.0223 16.0 576 0.0301 0.9346 0.9633 0.9888 1e-06 0.9083 0.9861 0.9955 1e-06 0.8360 0.9791 0.9886
0.0208 17.0 612 0.0308 0.9326 0.9578 0.9887 1e-06 0.8876 0.9907 0.9953 1e-06 0.8300 0.9797 0.9882
0.0198 18.0 648 0.0295 0.9339 0.9589 0.9888 1e-06 0.8897 0.9921 0.9949 1e-06 0.8335 0.9799 0.9882
0.0194 19.0 684 0.0311 0.9315 0.9524 0.9886 1e-06 0.8712 0.9894 0.9967 1e-06 0.8265 0.9802 0.9878
0.0188 20.0 720 0.0299 0.9332 0.9558 0.9888 1e-06 0.8807 0.9906 0.9959 1e-06 0.8318 0.9796 0.9882
0.0187 21.0 756 0.0298 0.9344 0.9567 0.9890 1e-06 0.8833 0.9905 0.9961 1e-06 0.8339 0.9810 0.9883
0.0179 22.0 792 0.0304 0.9334 0.9566 0.9889 1e-06 0.8834 0.9904 0.9959 1e-06 0.8317 0.9804 0.9882
0.0174 23.0 828 0.0301 0.9350 0.9603 0.9890 1e-06 0.8960 0.9895 0.9955 1e-06 0.8364 0.9803 0.9884
0.017 24.0 864 0.0294 0.9352 0.9589 0.9890 1e-06 0.8925 0.9877 0.9963 1e-06 0.8371 0.9802 0.9883
0.0172 25.0 900 0.0322 0.9334 0.9555 0.9888 1e-06 0.8796 0.9908 0.9960 1e-06 0.8320 0.9799 0.9882
0.0165 26.0 936 0.0312 0.9331 0.9556 0.9888 1e-06 0.8813 0.9891 0.9964 1e-06 0.8318 0.9792 0.9884
0.0162 27.0 972 0.0296 0.9350 0.9589 0.9891 1e-06 0.8911 0.9899 0.9959 1e-06 0.8360 0.9806 0.9885
0.0155 28.0 1008 0.0314 0.9359 0.9578 0.9892 1e-06 0.8880 0.9890 0.9965 1e-06 0.8384 0.9808 0.9884
0.0154 29.0 1044 0.0291 0.9379 0.9637 0.9894 1e-06 0.9061 0.9898 0.9952 1e-06 0.8438 0.9812 0.9887
0.0151 30.0 1080 0.0289 0.9372 0.9620 0.9893 1e-06 0.8994 0.9912 0.9952 1e-06 0.8419 0.9810 0.9887
0.0152 31.0 1116 0.0310 0.9365 0.9573 0.9893 1e-06 0.8865 0.9884 0.9969 1e-06 0.8397 0.9815 0.9884
0.0143 32.0 1152 0.0307 0.9376 0.9614 0.9894 1e-06 0.8983 0.9904 0.9956 1e-06 0.8433 0.9809 0.9887
0.0138 33.0 1188 0.0295 0.9385 0.9623 0.9896 1e-06 0.9004 0.9910 0.9955 1e-06 0.8451 0.9814 0.9889
0.0149 34.0 1224 0.0308 0.9380 0.9617 0.9894 1e-06 0.9007 0.9883 0.9961 1e-06 0.8444 0.9809 0.9886
0.0138 35.0 1260 0.0304 0.9376 0.9616 0.9894 1e-06 0.8993 0.9899 0.9958 1e-06 0.8431 0.9809 0.9888
0.0138 36.0 1296 0.0299 0.9379 0.9598 0.9895 1e-06 0.8932 0.9901 0.9962 1e-06 0.8433 0.9816 0.9887
0.0139 37.0 1332 0.0298 0.9378 0.9615 0.9895 1e-06 0.8983 0.9903 0.9958 1e-06 0.8435 0.9812 0.9889
0.0133 38.0 1368 0.0293 0.9393 0.9624 0.9897 1e-06 0.9008 0.9906 0.9958 1e-06 0.8467 0.9823 0.9889
0.0131 39.0 1404 0.0318 0.9368 0.9592 0.9893 1e-06 0.8922 0.9893 0.9963 1e-06 0.8406 0.9814 0.9884
0.0129 40.0 1440 0.0303 0.9382 0.9627 0.9895 1e-06 0.9034 0.9890 0.9958 1e-06 0.8447 0.9813 0.9887
0.0126 41.0 1476 0.0304 0.9392 0.9631 0.9896 1e-06 0.9037 0.9901 0.9956 1e-06 0.8471 0.9818 0.9887
0.0126 42.0 1512 0.0311 0.9378 0.9595 0.9895 1e-06 0.8929 0.9892 0.9965 1e-06 0.8432 0.9817 0.9887
0.0125 43.0 1548 0.0314 0.9383 0.9611 0.9895 1e-06 0.8974 0.9899 0.9960 1e-06 0.8453 0.9809 0.9888
0.0129 44.0 1584 0.0319 0.9374 0.9585 0.9895 1e-06 0.8886 0.9904 0.9964 1e-06 0.8420 0.9816 0.9887
0.0127 45.0 1620 0.0313 0.9380 0.9594 0.9895 1e-06 0.8920 0.9900 0.9964 1e-06 0.8436 0.9816 0.9887
0.0127 46.0 1656 0.0321 0.9379 0.9626 0.9895 1e-06 0.9029 0.9893 0.9957 1e-06 0.8444 0.9805 0.9890
0.0121 47.0 1692 0.0321 0.9377 0.9599 0.9895 1e-06 0.8930 0.9907 0.9960 1e-06 0.8430 0.9813 0.9888
0.0115 48.0 1728 0.0305 0.9390 0.9633 0.9897 1e-06 0.9043 0.9900 0.9957 1e-06 0.8463 0.9817 0.9890
0.0118 49.0 1764 0.0319 0.9378 0.9615 0.9895 1e-06 0.8987 0.9897 0.9959 1e-06 0.8434 0.9813 0.9889

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for selvaa/segformer-b1-finetuned-cityscapes-1024-1024-straighter-only-test

Finetuned
(7)
this model