moxin-reasoning-7b-GGUF

Original Model

moxin-org/moxin-reasoning-7b

Run with LlamaEdge

  • LlamaEdge version: v0.20.0

  • Prompt template

    • Prompt type: moxin-instruct

    • Prompt string

      <|system|>
      {system_message}
      <|user|>
      {user_message_1}
      <|assistant|>
      {assistant_message_1}<|endoftext|>
      <|user|>
      {user_message_2}
      <|assistant|>
      
  • Context size: 32000

  • Run as LlamaEdge service

    wasmedge --dir .:. \
      --nn-preload default:GGML:AUTO:moxin-reasoning-7b-Q5_K_M.gguf \
      llama-api-server.wasm \
      --model-name moxin-reasoning-7b \
      --prompt-template moxin-instruct \
      --ctx-size 32000
    

Quantized GGUF Models

Name Quant method Bits Size Use case
moxin-reasoning-7b-Q2_K.gguf Q2_K 2 3.04 GB smallest, significant quality loss - not recommended for most purposes
moxin-reasoning-7b-Q3_K_L.gguf Q3_K_L 3 4.28 GB small, substantial quality loss
moxin-reasoning-7b-Q3_K_M.gguf Q3_K_M 3 3.94 GB very small, high quality loss
moxin-reasoning-7b-Q3_K_S.gguf Q3_K_S 3 3.54 GB very small, high quality loss
moxin-reasoning-7b-Q4_0.gguf Q4_0 4 4.60 GB legacy; small, very high quality loss - prefer using Q3_K_M
moxin-reasoning-7b-Q4_K_M.gguf Q4_K_M 4 4.89 GB medium, balanced quality - recommended
moxin-reasoning-7b-Q4_K_S.gguf Q4_K_S 4 4.63 GB small, greater quality loss
moxin-reasoning-7b-Q5_0.gguf Q5_0 5 5.60 GB legacy; medium, balanced quality - prefer using Q4_K_M
moxin-reasoning-7b-Q5_K_M.gguf Q5_K_M 5 5.75 GB large, very low quality loss - recommended
moxin-reasoning-7b-Q5_K_S.gguf Q5_K_S 5 5.60 GB large, low quality loss - recommended
moxin-reasoning-7b-Q6_K.gguf Q6_K 6 6.66 GB very large, extremely low quality loss
moxin-reasoning-7b-Q8_0.gguf Q8_0 8 8.62 GB very large, extremely low quality loss - not recommended
moxin-reasoning-7b-f16.gguf f16 16 16.2 GB

Quantized with llama.cpp b5410

Downloads last month
230
GGUF
Model size
8.11B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support