|
--- |
|
license: apache-2.0 |
|
base_model: google/long-t5-tglobal-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: LongT5-Base-NSPCC |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LongT5-Base-NSPCC |
|
|
|
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1612 |
|
- Rouge1: 0.4604 |
|
- Rouge2: 0.1738 |
|
- Rougel: 0.2641 |
|
- Rougelsum: 0.2648 |
|
- Gen Len: 242.1064 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------:| |
|
| 13.1772 | 1.0 | 12 | 2.8918 | 0.2996 | 0.0788 | 0.1529 | 0.1528 | 359.617 | |
|
| 2.3541 | 2.0 | 24 | 1.2767 | 0.3935 | 0.1207 | 0.1972 | 0.1965 | 340.8298 | |
|
| 1.5574 | 3.0 | 36 | 1.1901 | 0.4486 | 0.1662 | 0.2444 | 0.2444 | 278.3511 | |
|
| 1.439 | 4.0 | 48 | 1.1712 | 0.46 | 0.1746 | 0.2628 | 0.2636 | 254.266 | |
|
| 1.4027 | 5.0 | 60 | 1.1603 | 0.4625 | 0.174 | 0.2619 | 0.2622 | 246.0851 | |
|
| 1.3858 | 6.0 | 72 | 1.1612 | 0.4604 | 0.1738 | 0.2641 | 0.2648 | 242.1064 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|