schnell's picture
update model card README.md
860b36e
|
raw
history blame
2.27 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-small-UnidicUnigram
    results: []

bert-small-UnidicUnigram

This model is a fine-tuned version of on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1279
  • Accuracy: 0.7455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • total_train_batch_size: 768
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 14.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5872 1.0 69473 1.4531 0.6867
1.4695 2.0 138946 1.3340 0.7073
1.4136 3.0 208419 1.2793 0.7173
1.3779 4.0 277892 1.2490 0.7227
1.3546 5.0 347365 1.2227 0.7277
1.3353 6.0 416838 1.2070 0.7307
1.3182 7.0 486311 1.1895 0.7334
1.3058 8.0 555784 1.1777 0.7360
1.2974 9.0 625257 1.1660 0.7378
1.2857 10.0 694730 1.1543 0.7401
1.2755 11.0 764203 1.1514 0.7408
1.2694 12.0 833676 1.1377 0.7431
1.2623 13.0 903149 1.1338 0.7442
1.2587 14.0 972622 1.1279 0.7455

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.12.0+cu116
  • Datasets 2.9.0
  • Tokenizers 0.12.1