File size: 17,039 Bytes
1bc7e54
 
 
 
 
 
 
 
d8a91f9
1bc7e54
d8a91f9
1bc7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7837959
0dbb356
d8a91f9
 
 
 
 
 
 
 
1bc7e54
 
 
 
 
 
 
 
 
 
 
 
 
0dbb356
1bc7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbb356
 
 
1bc7e54
 
 
 
 
 
 
 
 
0dbb356
1bc7e54
 
 
 
 
 
0dbb356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bc7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7837959
0dbb356
 
 
d8a91f9
 
 
 
 
 
 
 
 
 
 
1bc7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbb356
 
 
 
 
 
1bc7e54
 
 
 
 
 
 
 
 
d8a91f9
1bc7e54
 
 
 
 
d8a91f9
1bc7e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dbb356
1bc7e54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Code-Specialized Model2Vec Distillation Analysis

## 🎯 Executive Summary

This report presents a comprehensive analysis of Model2Vec distillation experiments using different teacher models for code-specialized embedding generation.

### Evaluated Models Overview

**Simplified Distillation Models:** 14
**Peer Comparison Models:** 19
**Total Models Analyzed:** 33

### Best Performing Simplified Model: code_model2vec_all_mpnet_base_v2

**Overall CodeSearchNet Performance:**
- **NDCG@10**: 0.7387
- **Mean Reciprocal Rank (MRR)**: 0.7010
- **Recall@5**: 0.8017
- **Mean Rank**: 6.4

## πŸ“Š Comprehensive Model Comparison

### All Simplified Distillation Models Performance

| Model | Teacher | NDCG@10 | MRR | Recall@5 | Status |
|-------|---------|---------|-----|----------|--------|
| code_model2vec_all_mpnet_base_v2 | [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.7387 | 0.7010 | 0.8017 | πŸ₯‡ Best |
| code_model2vec_all_MiniLM_L6_v2 | [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.7385 | 0.7049 | 0.7910 | πŸ₯ˆ 2nd |
| code_model2vec_jina_embeddings_v2_base_code | [jina-embeddings-v2-base-code](https://huggingface.co/jina-embeddings-v2-base-code) | 0.7381 | 0.6996 | 0.8130 | πŸ₯‰ 3rd |
| code_model2vec_paraphrase_MiniLM_L6_v2 | [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) | 0.7013 | 0.6638 | 0.7665 | #4 |
| code_model2vec_Reason_ModernColBERT | [lightonai/Reason-ModernColBERT](https://huggingface.co/lightonai/Reason-ModernColBERT) | 0.6598 | 0.6228 | 0.7260 | #5 |
| code_model2vec_all_mpnet_base_v2_fine_tuned | [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.6147 | 0.5720 | 0.6950 | #6 |
| code_model2vec_bge_m3 | [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | 0.4863 | 0.4439 | 0.5514 | #7 |
| code_model2vec_jina_embeddings_v3 | [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) | 0.4755 | 0.4416 | 0.5456 | #8 |
| code_model2vec_nomic_embed_text_v2_moe | [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) | 0.4532 | 0.4275 | 0.5094 | #9 |
| code_model2vec_gte_Qwen2_1.5B_instruct | [Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) | 0.4238 | 0.3879 | 0.4719 | #10 |
| code_model2vec_Qodo_Embed_1_1.5B | [Qodo/Qodo-Embed-1-1.5B](https://huggingface.co/Qodo/Qodo-Embed-1-1.5B) | 0.4101 | 0.3810 | 0.4532 | #11 |
| code_model2vec_graphcodebert_base | [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) | 0.3420 | 0.3140 | 0.3704 | #12 |
| code_model2vec_Linq_Embed_Mistral | [Linq-AI-Research/Linq-Embed-Mistral](https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral) | 0.2868 | 0.2581 | 0.3412 | #13 |
| code_model2vec_codebert_base | [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) | 0.2779 | 0.2534 | 0.3136 | #14 |


### πŸ“Š Model Specifications Analysis

Our distilled models exhibit consistent architectural characteristics across different teacher models:

| Model | Vocabulary Size | Parameters | Embedding Dim | Disk Size |
|-------|----------------|------------|---------------|-----------|
| all_mpnet_base_v2 | 29,528 | 7.6M | 256 | 14.4MB |
| all_MiniLM_L6_v2 | 29,525 | 7.6M | 256 | 14.4MB |
| jina_embeddings_v2_base_code | 61,053 | 15.6M | 256 | 29.8MB |
| paraphrase_MiniLM_L6_v2 | 29,525 | 7.6M | 256 | 14.4MB |
| Reason_ModernColBERT | 50,254 | 12.9M | 256 | 24.5MB |
| all_mpnet_base_v2_fine_tuned | 36,624 | 9.4M | 256 | 35.8MB |
| bge_m3 | 249,999 | 64.0M | 256 | 122.1MB |
| jina_embeddings_v3 | 249,999 | 64.0M | 256 | 122.1MB |
| nomic_embed_text_v2_moe | 249,999 | 64.0M | 256 | 122.1MB |
| gte_Qwen2_1.5B_instruct | 151,644 | 38.8M | 256 | 74.0MB |
| Qodo_Embed_1_1.5B | 151,644 | 38.8M | 256 | 74.0MB |
| graphcodebert_base | 50,262 | 12.9M | 256 | 24.5MB |
| Linq_Embed_Mistral | 31,999 | 8.2M | 256 | 15.6MB |
| codebert_base | 50,262 | 12.9M | 256 | 24.5MB |


![Model Specifications](analysis_charts/model_specifications.png)

*Comprehensive analysis of our distilled models showing vocabulary size, parameter count, embedding dimensions, and storage requirements.*

#### Key Insights from Model Specifications:


- **Vocabulary Consistency**: All models use vocabulary sizes ranging from 29,525 to 249,999 tokens (avg: 101,594)
- **Parameter Efficiency**: Models range from 7.6M to 64.0M parameters (avg: 26.0M)
- **Storage Efficiency**: Disk usage ranges from 14.4MB to 122.1MB (avg: 50.9MB)
- **Embedding Dimensions**: Consistent 256 dimensions across all models (optimized for efficiency)


### Key Findings


- **Best Teacher Model**: code_model2vec_all_mpnet_base_v2 (NDCG@10: 0.7387)
- **Least Effective Teacher**: code_model2vec_codebert_base (NDCG@10: 0.2779)
- **Performance Range**: 62.4% difference between best and worst
- **Average Performance**: 0.5248 NDCG@10


## 🎯 Language Performance Radar Charts

### Best Model vs Peer Models Comparison

![Comparative Radar Chart](analysis_charts/comparative_radar.png)

*Comparative view showing how the best simplified distillation model performs against top peer models across programming languages.*

### Individual Model Performance by Language

#### code_model2vec_all_mpnet_base_v2 (Teacher: [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) - NDCG@10: 0.7387

![code_model2vec_all_mpnet_base_v2 Radar Chart](analysis_charts/radar_code_model2vec_all_mpnet_base_v2.png)

#### code_model2vec_all_MiniLM_L6_v2 (Teacher: [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)) - NDCG@10: 0.7385

![code_model2vec_all_MiniLM_L6_v2 Radar Chart](analysis_charts/radar_code_model2vec_all_MiniLM_L6_v2.png)

#### code_model2vec_jina_embeddings_v2_base_code (Teacher: [jina-embeddings-v2-base-code](https://huggingface.co/jina-embeddings-v2-base-code)) - NDCG@10: 0.7381

![code_model2vec_jina_embeddings_v2_base_code Radar Chart](analysis_charts/radar_code_model2vec_jina_embeddings_v2_base_code.png)

#### code_model2vec_paraphrase_MiniLM_L6_v2 (Teacher: [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2)) - NDCG@10: 0.7013

![code_model2vec_paraphrase_MiniLM_L6_v2 Radar Chart](analysis_charts/radar_code_model2vec_paraphrase_MiniLM_L6_v2.png)

#### code_model2vec_Reason_ModernColBERT (Teacher: [lightonai/Reason-ModernColBERT](https://huggingface.co/lightonai/Reason-ModernColBERT)) - NDCG@10: 0.6598

![code_model2vec_Reason_ModernColBERT Radar Chart](analysis_charts/radar_code_model2vec_Reason_ModernColBERT.png)

#### code_model2vec_all_mpnet_base_v2_fine_tuned (Teacher: [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)) - NDCG@10: 0.6147

![code_model2vec_all_mpnet_base_v2_fine_tuned Radar Chart](analysis_charts/radar_code_model2vec_all_mpnet_base_v2_fine_tuned.png)

#### code_model2vec_bge_m3 (Teacher: [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)) - NDCG@10: 0.4863

![code_model2vec_bge_m3 Radar Chart](analysis_charts/radar_code_model2vec_bge_m3.png)

#### code_model2vec_jina_embeddings_v3 (Teacher: [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3)) - NDCG@10: 0.4755

![code_model2vec_jina_embeddings_v3 Radar Chart](analysis_charts/radar_code_model2vec_jina_embeddings_v3.png)

#### code_model2vec_nomic_embed_text_v2_moe (Teacher: [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe)) - NDCG@10: 0.4532

![code_model2vec_nomic_embed_text_v2_moe Radar Chart](analysis_charts/radar_code_model2vec_nomic_embed_text_v2_moe.png)

#### code_model2vec_gte_Qwen2_1.5B_instruct (Teacher: [Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct)) - NDCG@10: 0.4238

![code_model2vec_gte_Qwen2_1.5B_instruct Radar Chart](analysis_charts/radar_code_model2vec_gte_Qwen2_15B_instruct.png)

#### code_model2vec_Qodo_Embed_1_1.5B (Teacher: [Qodo/Qodo-Embed-1-1.5B](https://huggingface.co/Qodo/Qodo-Embed-1-1.5B)) - NDCG@10: 0.4101

![code_model2vec_Qodo_Embed_1_1.5B Radar Chart](analysis_charts/radar_code_model2vec_Qodo_Embed_1_15B.png)

#### code_model2vec_graphcodebert_base (Teacher: [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)) - NDCG@10: 0.3420

![code_model2vec_graphcodebert_base Radar Chart](analysis_charts/radar_code_model2vec_graphcodebert_base.png)

#### code_model2vec_Linq_Embed_Mistral (Teacher: [Linq-AI-Research/Linq-Embed-Mistral](https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral)) - NDCG@10: 0.2868

![code_model2vec_Linq_Embed_Mistral Radar Chart](analysis_charts/radar_code_model2vec_Linq_Embed_Mistral.png)

#### code_model2vec_codebert_base (Teacher: [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base)) - NDCG@10: 0.2779

![code_model2vec_codebert_base Radar Chart](analysis_charts/radar_code_model2vec_codebert_base.png)



## πŸ† Peer Model Comparison

![Peer Comparison](analysis_charts/peer_comparison.png)

*Comparison with established code-specialized embedding models using actual evaluation results.*

### Complete Model Ranking

| Rank | Model | Type | NDCG@10 | MRR | Recall@5 |
|------|-------|------|---------|-----|----------|
| 1 | Alibaba-NLP/gte-Qwen2-1.5B-instruct | General | 0.9729 | 0.9676 | 0.9825 |
| 2 | Qodo/Qodo-Embed-1-1.5B | General | 0.9715 | 0.9659 | 0.9875 |
| 3 | jina-embeddings-v2-base-code | General | 0.9677 | 0.9618 | 0.9849 |
| 4 | jinaai/jina-embeddings-v3 | General | 0.9640 | 0.9573 | 0.9839 |
| 5 | sentence-transformers/all-mpnet-base-v2 | General | 0.9477 | 0.9358 | 0.9732 |
| 6 | nomic-ai/nomic-embed-text-v2-moe | General | 0.9448 | 0.9357 | 0.9659 |
| 7 | sentence-transformers/all-MiniLM-L12-v2 | General | 0.9398 | 0.9265 | 0.9732 |
| 8 | BAAI/bge-m3 | General | 0.9383 | 0.9295 | 0.9643 |
| 9 | sentence-transformers/all-MiniLM-L6-v2 | General | 0.9255 | 0.9099 | 0.9642 |
| 10 | lightonai/Reason-ModernColBERT | General | 0.9188 | 0.9036 | 0.9486 |
| 11 | Linq-AI-Research/Linq-Embed-Mistral | General | 0.9080 | 0.8845 | 0.9650 |
| 12 | sentence-transformers/paraphrase-MiniLM-L6-v2 | General | 0.8297 | 0.8016 | 0.8828 |
| 13 | minishlab/potion-base-8M | Model2Vec | 0.8162 | 0.7817 | 0.8931 |
| 14 | minishlab/potion-retrieval-32M | Model2Vec | 0.8137 | 0.7810 | 0.8792 |
| 15 | code_model2vec_all_mpnet_base_v2 | **πŸ”₯ Simplified Distillation** | 0.7387 | 0.7010 | 0.8017 |
| 16 | code_model2vec_all_MiniLM_L6_v2 | **πŸ”₯ Simplified Distillation** | 0.7385 | 0.7049 | 0.7910 |
| 17 | code_model2vec_jina_embeddings_v2_base_code | **πŸ”₯ Simplified Distillation** | 0.7381 | 0.6996 | 0.8130 |
| 18 | code_model2vec_paraphrase_MiniLM_L6_v2 | **πŸ”₯ Simplified Distillation** | 0.7013 | 0.6638 | 0.7665 |
| 19 | code_model2vec_Reason_ModernColBERT | **πŸ”₯ Simplified Distillation** | 0.6598 | 0.6228 | 0.7260 |
| 20 | code_model2vec_all_mpnet_base_v2_fine_tuned | **πŸŽ“ Fine-tuned Distillation** | 0.6147 | 0.5720 | 0.6950 |
| 21 | potion-multilingual-128M | Model2Vec | 0.6124 | 0.5683 | 0.7017 |
| 22 | huggingface/CodeBERTa-small-v1 | Code-Specific | 0.5903 | 0.5350 | 0.6779 |
| 23 | Salesforce/codet5-base | Code-Specific | 0.4872 | 0.4500 | 0.5742 |
| 24 | code_model2vec_bge_m3 | **πŸ”₯ Simplified Distillation** | 0.4863 | 0.4439 | 0.5514 |
| 25 | code_model2vec_jina_embeddings_v3 | **πŸ”₯ Simplified Distillation** | 0.4755 | 0.4416 | 0.5456 |
| 26 | code_model2vec_nomic_embed_text_v2_moe | **πŸ”₯ Simplified Distillation** | 0.4532 | 0.4275 | 0.5094 |
| 27 | code_model2vec_gte_Qwen2_1.5B_instruct | **πŸ”₯ Simplified Distillation** | 0.4238 | 0.3879 | 0.4719 |
| 28 | code_model2vec_Qodo_Embed_1_1.5B | **πŸ”₯ Simplified Distillation** | 0.4101 | 0.3810 | 0.4532 |
| 29 | microsoft/graphcodebert-base | Code-Specific | 0.4039 | 0.3677 | 0.4650 |
| 30 | code_model2vec_graphcodebert_base | **πŸ”₯ Simplified Distillation** | 0.3420 | 0.3140 | 0.3704 |
| 31 | code_model2vec_Linq_Embed_Mistral | **πŸ”₯ Simplified Distillation** | 0.2868 | 0.2581 | 0.3412 |
| 32 | code_model2vec_codebert_base | **πŸ”₯ Simplified Distillation** | 0.2779 | 0.2534 | 0.3136 |
| 33 | microsoft/codebert-base | Code-Specific | 0.1051 | 0.1058 | 0.1105 |


## πŸ“ˆ Performance Analysis

### Multi-Model Comparison Charts

![Model Comparison](analysis_charts/model_comparison.png)

*Comprehensive comparison across all evaluation metrics.*

### Language Performance Analysis

![Language Heatmap](analysis_charts/language_heatmap.png)

*Performance heatmap showing how different models perform across programming languages.*

### Efficiency Analysis

![Efficiency Analysis](analysis_charts/efficiency_analysis.png)

*Performance vs model size analysis showing the efficiency benefits of distillation.*



## ⚑ Operational Performance Analysis

![Benchmark Performance](analysis_charts/benchmark_performance.png)

*Comprehensive performance benchmarking across multiple operational metrics.*

### Performance Scaling Analysis

![Batch Size Scaling](analysis_charts/batch_size_scaling.png)

*How performance scales with different batch sizes for optimal throughput.*

![Memory Scaling](analysis_charts/memory_scaling.png)

*Memory usage patterns across different batch sizes.*



## πŸ” Language-Specific Analysis

### Performance by Programming Language

| Language | Best Model Performance | Average Performance | Language Difficulty |
|----------|------------------------|--------------------|--------------------|
| Go | 0.9780 | 0.6960 | Easy |
| Java | 0.9921 | 0.6553 | Easy |
| Javascript | 0.9550 | 0.5850 | Easy |
| Php | 1.0000 | 0.6321 | Easy |
| Python | 1.0000 | 0.8623 | Easy |
| Ruby | 0.9493 | 0.6397 | Easy |


## 🎯 Conclusions and Recommendations

### Teacher Model Analysis

Based on the evaluation results across all simplified distillation models:


1. **Best Teacher Model**: sentence-transformers/all-MiniLM-L6-v2 (NDCG@10: 0.7385)
2. **Least Effective Teacher**: microsoft/codebert-base (NDCG@10: 0.2779)
3. **Teacher Model Impact**: Choice of teacher model affects performance by 62.4%

### Recommendations

- **For Production**: Use sentence-transformers/all-MiniLM-L6-v2 as teacher model for best performance
- **For Efficiency**: Model2Vec distillation provides significant size reduction with competitive performance
- **For Code Tasks**: Specialized models consistently outperform general-purpose models


## πŸ“„ Methodology

### Evaluation Protocol
- **Dataset**: CodeSearchNet test sets for 6 programming languages
- **Metrics**: NDCG@k, MRR, Recall@k following CodeSearchNet methodology
- **Query Format**: Natural language documentation strings
- **Corpus Format**: Function code strings
- **Evaluation**: Retrieval of correct code for each documentation query

### Teacher Models Tested
- [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) (proven baseline)
- [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) (general purpose)
- [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) (paraphrase model)
- [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) (code-specialized)
- [microsoft/graphcodebert-base](https://huggingface.co/microsoft/graphcodebert-base) (graph-aware code model)
- [Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct) (instruction model)
- [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) (multilingual model)
- [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) (modern embedding model)
- [nomic-ai/nomic-embed-text-v2-moe](https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe) (mixture of experts)
- [Qodo/Qodo-Embed-1-1.5B](https://huggingface.co/Qodo/Qodo-Embed-1-1.5B) (code-specialized)
- [lightonai/Reason-ModernColBERT](https://huggingface.co/lightonai/Reason-ModernColBERT) (ColBERT architecture)
- [Linq-AI-Research/Linq-Embed-Mistral](https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral) (Mistral-based)
- [BAAI/bge-code-v1](https://huggingface.co/BAAI/bge-code-v1) (code-specialized BGE)
- [Salesforce/SFR-Embedding-Code-2B_R](https://huggingface.co/Salesforce/SFR-Embedding-Code-2B_R) (large code model)

### Distillation Method
- **Technique**: Model2Vec static embedding generation
- **Parameters**: PCA dims=256, SIF coefficient=1e-3, Zipf weighting=True
- **Training Data**: CodeSearchNet comment-code pairs
- **Languages**: Python, JavaScript, Java, PHP, Ruby, Go

---

*Report generated on 2025-06-01 08:04:06 using automated analysis pipeline.*
*For questions about methodology or results, please refer to the CodeSearchNet documentation.*