|
--- |
|
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana. |
|
- text: Tengo un problema con un cajero automático que no me dio el dinero pero sí |
|
lo cargó. |
|
- text: El chip de mi tarjeta de Banorte no funciona, hice una transferencia a mi |
|
tarjeta de BBVA y el cajero se quedó con ella, ¿cómo va su sábado? |
|
- text: Evo Banco reporta un asombroso incremento del 700% en sus depósitos en un |
|
año y ahora ofrece la posibilidad de contratar servicios a través de WhatsApp. |
|
- text: Los nuevos jubilados que acrediten su pensión en BBVA recibirán un regalo |
|
de bienvenida de $130.000. |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8028571428571428 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:---------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| discard | <ul><li>'Marcos informa que se puede realizar el pago de productos de BBVA a través de la Línea BBVA, cajeros automáticos, practicajas, ventanilla de sucursal o diversos comercios.'</li><li>'Se ha celebrado una reunión de alto nivel en 2024 para concretar proyectos de inversión, incluyendo la cooperación con BBVA para la construcción de un portadrones y en el ámbito turístico.'</li><li>'Diversificar es clave para alcanzar nuestros objetivos en inversiones y en la vida, descubre cómo tus decisiones financieras pueden impactar tu vida personal en este artículo.'</li></ul> | |
|
| relevant | <ul><li>'La persona recibió un correo idéntico al que le explicaron que es una técnica de estafa que simula enviarlo desde su propia cuenta.'</li><li>'La cancelación de la cuenta se ha demorado un mes y al solicitar 200 euros para un viaje, me han cobrado 9 euros de comisión.'</li><li>'El Santander logró récords en beneficios y comisiones a los desfavorecidos bajo el ministerio del consagrado en Consumo, mientras se obsesionan con la apariencia y carecen de dignidad y principios.'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8029 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("saraestevez/setfit-minilm-bank-tweets-processed-400") |
|
# Run inference |
|
preds = model("La app de BBVA está caída, pero se pide paciencia para los depósitos de mañana.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 1 | 21.6612 | 44 | |
|
|
|
| Label | Training Sample Count | |
|
|:---------|:----------------------| |
|
| discard | 400 | |
|
| relevant | 400 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0005 | 1 | 0.3197 | - | |
|
| 0.025 | 50 | 0.2199 | - | |
|
| 0.05 | 100 | 0.2876 | - | |
|
| 0.075 | 150 | 0.2568 | - | |
|
| 0.1 | 200 | 0.196 | - | |
|
| 0.125 | 250 | 0.15 | - | |
|
| 0.15 | 300 | 0.1475 | - | |
|
| 0.175 | 350 | 0.081 | - | |
|
| 0.2 | 400 | 0.0441 | - | |
|
| 0.225 | 450 | 0.0228 | - | |
|
| 0.25 | 500 | 0.0017 | - | |
|
| 0.275 | 550 | 0.0083 | - | |
|
| 0.3 | 600 | 0.002 | - | |
|
| 0.325 | 650 | 0.0013 | - | |
|
| 0.35 | 700 | 0.0011 | - | |
|
| 0.375 | 750 | 0.0014 | - | |
|
| 0.4 | 800 | 0.0004 | - | |
|
| 0.425 | 850 | 0.0001 | - | |
|
| 0.45 | 900 | 0.0118 | - | |
|
| 0.475 | 950 | 0.0002 | - | |
|
| 0.5 | 1000 | 0.0012 | - | |
|
| 0.525 | 1050 | 0.0003 | - | |
|
| 0.55 | 1100 | 0.0001 | - | |
|
| 0.575 | 1150 | 0.0003 | - | |
|
| 0.6 | 1200 | 0.0001 | - | |
|
| 0.625 | 1250 | 0.0001 | - | |
|
| 0.65 | 1300 | 0.0001 | - | |
|
| 0.675 | 1350 | 0.0002 | - | |
|
| 0.7 | 1400 | 0.0197 | - | |
|
| 0.725 | 1450 | 0.0002 | - | |
|
| 0.75 | 1500 | 0.0002 | - | |
|
| 0.775 | 1550 | 0.0001 | - | |
|
| 0.8 | 1600 | 0.0004 | - | |
|
| 0.825 | 1650 | 0.0001 | - | |
|
| 0.85 | 1700 | 0.0001 | - | |
|
| 0.875 | 1750 | 0.0001 | - | |
|
| 0.9 | 1800 | 0.0001 | - | |
|
| 0.925 | 1850 | 0.0001 | - | |
|
| 0.95 | 1900 | 0.0158 | - | |
|
| 0.975 | 1950 | 0.0001 | - | |
|
| 1.0 | 2000 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.11.0rc1 |
|
- SetFit: 1.0.3 |
|
- Sentence Transformers: 2.7.0 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.3.1+cu121 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |