sandernotenbaert's picture
Model save
b7ed741 verified
---
library_name: transformers
base_model: sandernotenbaert/okai-musiclang-content-t5-small_finetune
tags:
- generated_from_trainer
model-index:
- name: okai-musiclang-content-t5-small_finetune
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# okai-musiclang-content-t5-small_finetune
This model is a fine-tuned version of [sandernotenbaert/okai-musiclang-content-t5-small_finetune](https://huggingface.co/sandernotenbaert/okai-musiclang-content-t5-small_finetune) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAFACTOR and the args are:
No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 1.7839 | 0.2226 | 500 | 1.6513 |
| 1.6576 | 0.4452 | 1000 | 1.6615 |
| 1.6396 | 0.6679 | 1500 | 1.6650 |
| 1.7168 | 0.8905 | 2000 | 1.6315 |
| 1.7366 | 1.1131 | 2500 | 1.6234 |
| 1.7171 | 1.3357 | 3000 | 1.6028 |
| 1.6238 | 1.5583 | 3500 | 1.6130 |
| 1.6217 | 1.7810 | 4000 | 1.6218 |
| 1.7077 | 2.0036 | 4500 | 1.5784 |
| 1.7034 | 2.2262 | 5000 | 1.5792 |
| 1.6049 | 2.4488 | 5500 | 1.5866 |
| 1.6018 | 2.6714 | 6000 | 1.5869 |
| 1.6628 | 2.8941 | 6500 | 1.5628 |
| 1.653 | 3.1171 | 7000 | 1.5606 |
| 1.6575 | 3.3397 | 7500 | 1.5381 |
| 1.64 | 3.5619 | 8000 | 1.5395 |
| 1.6455 | 3.7845 | 8500 | 1.5163 |
| 1.6308 | 4.0076 | 9000 | 1.5311 |
| 1.6324 | 4.2302 | 9500 | 1.5118 |
| 1.5481 | 4.4528 | 10000 | 1.5092 |
| 1.547 | 4.6754 | 10500 | 1.5109 |
| 1.5584 | 4.8981 | 11000 | 1.5041 |
### Framework versions
- Transformers 4.55.0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2