OKAI-midi-gen-v-003

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.9243
  • Accuracy: 0.0006

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 444
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 24
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.3
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Accuracy
10.0807 3.2283 100 10.3767 0.0017
8.5059 6.4565 200 10.0807 0.0051
6.9441 9.6848 300 10.1639 0.0067
4.8834 12.9130 400 10.2550 0.0040
3.1164 16.1304 500 10.3465 0.0022
1.6129 19.3587 600 10.4677 0.0012
0.6993 22.5870 700 10.5827 0.0009
0.3373 25.8152 800 10.6865 0.0008
0.192 29.0326 900 10.7662 0.0006
0.1231 32.2609 1000 10.8070 0.0006
0.0955 35.4891 1100 10.8383 0.0006
0.0796 38.7174 1200 10.8623 0.0007
0.0714 41.9457 1300 10.8789 0.0005
0.0626 45.1630 1400 10.9002 0.0007
0.0564 48.3913 1500 10.9080 0.0007
0.0508 51.6196 1600 10.9148 0.0007
0.0494 54.8478 1700 10.9207 0.0006
0.0487 58.0652 1800 10.9227 0.0006
0.0477 61.2935 1900 10.9239 0.0006
0.0471 64.5217 2000 10.9243 0.0006

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.6.0
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
103M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including sandernotenbaert/OKAI-midi-gen-v-003