metadata
library_name: transformers
tags:
- generated_from_trainer
- music
- midi-to-midi
metrics:
- accuracy
training_config:
- max_position_embeddings: 1024
- num_attention_heads: 8
- num_hidden_layers: 8
- sliding_window: 4
- intermediate_size: 512
- hidden_size: 256
- num_key_value_heads: 4
model-index:
- name: OKAI-midi-gen-v-002
results: []
pipeline_tag: other
OKAI-midi-gen-v-002
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 10.7039
- Accuracy: 0.0004
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
training_config:
- max_position_embeddings: 1024
- num_attention_heads: 8
- num_hidden_layers: 8
- sliding_window: 4
- intermediate_size: 512
- hidden_size: 256
- num_key_value_heads: 4
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 16
- seed: 444
- gradient_accumulation_steps: 3
- total_train_batch_size: 24
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.3
- training_steps: 2000
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
10.2078 | 3.2283 | 100 | 10.2675 | 0.0004 |
9.6734 | 6.4565 | 200 | 10.0564 | 0.0030 |
9.1879 | 9.6848 | 300 | 9.9516 | 0.0036 |
8.8395 | 12.9130 | 400 | 9.9849 | 0.0038 |
8.4477 | 16.1304 | 500 | 10.0295 | 0.0037 |
7.9007 | 19.3587 | 600 | 10.0765 | 0.0023 |
7.2277 | 22.5870 | 700 | 10.1370 | 0.0016 |
6.5655 | 25.8152 | 800 | 10.2042 | 0.0011 |
5.8915 | 29.0326 | 900 | 10.2386 | 0.0010 |
5.1573 | 32.2609 | 1000 | 10.3026 | 0.0006 |
4.6311 | 35.4891 | 1100 | 10.3649 | 0.0006 |
4.1848 | 38.7174 | 1200 | 10.4672 | 0.0005 |
3.7458 | 41.9457 | 1300 | 10.5312 | 0.0003 |
3.487 | 45.1630 | 1400 | 10.5832 | 0.0003 |
3.206 | 48.3913 | 1500 | 10.6327 | 0.0005 |
3.0194 | 51.6196 | 1600 | 10.6676 | 0.0005 |
2.9182 | 54.8478 | 1700 | 10.6874 | 0.0005 |
2.9033 | 58.0652 | 1800 | 10.6992 | 0.0004 |
2.8987 | 61.2935 | 1900 | 10.7033 | 0.0005 |
2.8351 | 64.5217 | 2000 | 10.7039 | 0.0004 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0
- Datasets 3.6.0
- Tokenizers 0.21.1